Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anim Biotechnol ; 29(3): 161-173, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28657495

RESUMEN

Fish are an important source of highly unsaturated fatty acids (HUFA) such as eicosapentaenoic acid EPA (20:5 n-3) and docosahexaenoic acid DHA (22:6 n-3) and play a significant role in human nutrition. The fatty acyl delta6-desaturase (Δ6 desaturase) is a rate-limiting enzyme in the biosynthetic pathway of highly unsaturated fatty acids (HUFA) that converts polyunsaturated fatty acids (PUFA) such as linoleic (18:2n-6) and α-linolenic (18:3n-3) acids into HUFA. In this study, fatty acyl Δ6 desaturase was identified from pangasius (Pangasianodon hypophthalmus) and further analyzed for sequenced-based characterization and 3D structural conformation. Sequenced-based analysis revealed some important secondary information such as physicochemical property. e.g., isoelectric point, extinction coefficient, aliphatic index, and grand average hydropathy, among others, and also post-translational modification sites were identified. An evolutionary-conserved stretch of amino acid residue and a functionally significant conserved structural ancestor, N-terminal cytochrome b5 and membrane FADS-like superfamily, were identified. Protein association analysis showed a high confidence score with acyl-CoA synthetase, elovl5, elovl2, and phospholipase A2. Herein, we report, for the first time, a 3D native structure of Δ6 desaturase protein by homology modeling approach; molecular docking analysis was performed with linoleic (18:2n-6) and α-linolenic (18:3n-3) acids, which are the two key substrates in the HUFA biosynthetic pathway. This work provides insight into the structural and functional characterization of Δ6 desaturase, which is involved in HUFA biosynthesis as a rate-limiting enzyme.


Asunto(s)
Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Linoleoil-CoA Desaturasa/química , Linoleoil-CoA Desaturasa/metabolismo , Secuencia de Aminoácidos , Animales , Bagres , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios Proteicos
2.
Indian J Virol ; 24(1): 48-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24426257

RESUMEN

White spot syndrome virus (WSSV) is one of the major pathogens in shrimp aquaculture. Four proteins of WSSV are predicted to encode a RING H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimps can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, expression profile of Penaeus monodon Ubiquitin conjugating enzyme (PmUbc) was studied at protein level in WSSV challenged shrimp. A time point analysis of the expression of PmUbc was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge in P. monodon. Recombinant PmUbc (rPmUbc) was produced in prokaryotic expression vector, BL21 (DE3) pLys S. The PmUbc expression pattern was studied by ELISA with rPmUbc antibodies raised in rabbit. A significant increase in PmUbc expression at 24 h post infection (hpi) was observed followed by a decline till 72 hpi. Since the up-regulation and a tremendous decline of PmUbc protein expression was observed at 24 and in 72 hpi respectively in ELISA, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. Many findings have shown that viral infection can up-regulate expression of ubiquitin and that the ubiquitin system plays a key role in the course of viral infection. The present study reveals the expression patterns of PmUbc at protein level in WSSV infected P. monodon. However, further studies are to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this major culprit in shrimp culture industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA