Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arch Toxicol ; 96(10): 2815-2824, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748892

RESUMEN

Craniofacial defects are one of the most frequent abnormalities at birth, but their experimental evaluation in animal models requires complex procedures. The aim of the present work is the comparison of different methodologies to identify dose- and stage-related craniofacial malformations in Xenopus laevis assay (R-FETAX, where the full cartilage evaluation, including flat mount technique, is the gold standard for skeletal defect detection). Different methods (external morphological evaluation of fresh samples, deglutition test, whole mount cartilage evaluation and Meckel-palatoquadrate angle measurements) were applied. Triadimefon (FON) was selected as the causative molecule as it is known to induce craniofacial defects in different animal models, including the amphibian X. laevis.FON exposure (0-31.25 µM) was scheduled to cover the whole 6-day test (from gastrula to free swimming tadpole stage) or each crucial developmental phases: gastrula, neurula, early morphogenesis, late morphogenesis, tadpole. Dose-dependent effects (fusions among craniofacial cartilages) were evident for groups exposed during the morphogenetic periods (neurula, early morphogenesis, late morphogenesis); gastrula was insensitive to the tested concentrations, tadpole group showed malformations only at 31.25 µM. The overall NOAEL was set at 3.9 µM. Results were evaluated applying benchmark dose (BMD) approach. The comparison of relative potencies from different methods showed deglutition as the only assay comparable with the gold standard (cartilage full evaluation).In conclusion, we suggest deglutition test as a reliable method for a rapid screening of craniofacial abnormalities in the alternative model X. laevis. This is a rapid, inexpensive and vital test allowing to preserve samples for the application of further morphological or molecular investigations.


Asunto(s)
Anomalías Craneofaciales , Triazoles , Animales , Anomalías Craneofaciales/inducido químicamente , Morfogénesis , Xenopus laevis
2.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204426

RESUMEN

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Proteínas Musculares/deficiencia , Músculos/embriología , Músculos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Desarrollo Embrionario , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Ciliadas Auditivas/metabolismo , Mecanotransducción Celular/genética , Desarrollo de Músculos/genética , Organogénesis/genética , Fenotipo , Transporte de Proteínas
3.
J Toxicol Environ Health A ; 83(4): 168-179, 2020 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-32141411

RESUMEN

Microplastic (MP) contamination represents a serious threat for marine organisms. Several lab studies demonstrated adverse effects induced by exposure to different MP polymers toward diverse marine species. However, the information regarding toxicity of polyethylene terephthalate (PET) MPs is largely unknown. The present study was aimed at investigating the adverse effects induced by 7-day exposure to two concentrations (0.125 or 12.5 µg/ml) micronized, irregular shaped and variable size PET microparticles (PET-MPs) toward Manila clam (Ruditapes philippinarum). Histological analyses were performed to assess tissue damage on digestive glands, gonads, gut and gills, whereas oxidative stress-related effects, including the concentration of pro-oxidant molecules, activity of antioxidant (superoxide dismutase - SOD, catalase - CAT and glutathione peroxidase - GPx) and detoxifying (glutathione S-transferase - GST) enzymes, as well as levels of lipid peroxidation, were determined in gills and digestive gland. Our results showed that clams ingest and egest micronized PET-MPs, but no marked histological alterations to bivalve tissues occurred. Although PET-MPs did not produce oxidative stress in the digestive gland, these materials significantly altered oxidative status of gills, leading to lipid peroxidation. No apparent clear indication of a weakness of bivalve health status was obtained in this study.


Asunto(s)
Bivalvos/efectos de los fármacos , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tereftalatos Polietilenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales
4.
Environ Res ; 152: 128-140, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27771567

RESUMEN

The chronic toxicity of ZnSO4 and ZnO nanoparticles has been studied in Daphnia magna also considering the life cycle parameters beyond the standard 21-day exposure time. Specimens have been individually followed until the natural end of their life, and some of them sampled for microscopic analyses at 48h, 9 and 21 days. Despite the low level of exposure (0.3mg Zn/L), ultrastructural analyses of the midgut epithelial cells revealed efficient internalization of nanoparticles between 48h and 9d, and translocation to other tissues as well. At 21d, the most affected fields have been recorded for both compounds; in particular samples exposed to ZnO nanoparticles showed swelling of mitochondria, while those exposed to ZnSO4 had a great number of autophagy vacuoles. The life cycle parameters resulted altered as well, with a significant inhibition of reproduction in both groups, when compared to controls. After the 21-day exposure, some interesting results were obtained: animals, previously exposed to nanoZnO at low concentrations, showed a complete recovery of the full reproduction potential, while those previously exposed to ZnSO4 presented a dose-dependent and compound-specific reduction in lifespan. Based on the results from the present research and the effects of the same chemicals at higher doses, it can be concluded that the soluble form plays a key role in ZnO nanoparticle cytotoxicity, and that the nanoparticulate form is able to locally increase the amount of Zn inside the cell, even within the ovary. It's worth noting that ZnO nanoparticles have been internalized despite the very low concentration used: this raises concern about the possible environmental implications which may derive from their use, and which in turn must be carefully considered.


Asunto(s)
Daphnia/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Óxido de Zinc/toxicidad , Sulfato de Zinc/toxicidad , Animales , Daphnia/fisiología , Daphnia/ultraestructura , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Crónica
5.
Environ Res ; 148: 376-385, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27131075

RESUMEN

The role of soluble zinc has been determined in Daphnia magna by a morphological approach, integrating a previous paper in which the ultrastructural damages to gut epithelial cells have been studied after ZnO nanoparticles exposure. In the present paper, the toxicity and morphological effects of soluble zinc from ZnSO4 have been determined in a 48-h acute exposure test. Daphnids have been exposed to six nominal zinc concentrations (0.075, 0.15, 0.3, 0.6, 1.2, and 2.4mg Zn/L) and then fixed for microscopic analyses. Data from the acute toxicity tests gave an EC50 value of 0.99mg/L and showed that no immobilization appeared up to 0.3mg Zn/L. Ultrastructural analyses of samples from the two highest concentrations showed large vacuolar structures, swelling of mitochondria, multilamellar bodies, and a great number of autophagy vacuoles. These findings have been compared to those from our previous study, and similarities and/or differences discussed. Based on the overall results it can be concluded that dissolved zinc ions played a key role in ZnO nanoparticle toxicity and that the morphological approach is an extremely useful tool for comparing toxicological effects as well. A possible common toxic mechanism of soluble zinc and ZnO nanoparticles was also proposed.


Asunto(s)
Nanopartículas del Metal/toxicidad , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad , Animales , Daphnia/efectos de los fármacos , Enterocitos/efectos de los fármacos , Enterocitos/patología , Enterocitos/ultraestructura , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/ultraestructura , Microscopía Electrónica de Transmisión , Pruebas de Toxicidad Aguda
6.
Aquat Toxicol ; 272: 106975, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824744

RESUMEN

In this study, we investigated the effects of PVC microplastics (PVC-MPs) using two different animal models: the brittle star Ophiactis virens, and the African clawed frog Xenopus laevis. This is the first study using an environmental relevant sample of PVC-MPs obtained through mechanical fragmentation of a common PVC plumbing pipe. Exposure experiments on brittle star were performed on the adult stage for a duration of 14 days, while those on African clawed frog were performed on the embryogenic developmental stage according to the standardized FETAX protocol (Frog Embryo Teratogenesis Assay-Xenopus). For both models, different endpoints were analysed: mortality, developmental parameters, behavioural assays and histological analyses on target organs by optical and electronic microscopy. Results showed that the concentration of 0.1 µg mL-1 PVC do not cause any adverse effects in both models (common NOEC concentration), while exposure to 1 µg mL-1 PVC adversely affected at least one species (common LOEC concentration). In particular arm regeneration efficiency was the most affected parameters in O. virens leading to a significantly lower differentiation pattern at 1 µg mL-1 PVC. On the contrary, in X. laevis larvae histopathological analyses and behavioural tests were the most susceptible endpoints, exhibiting several abnormal figures and different swimming speed at 10 µg mL-1 PVC. Histopathological analyses revealed a higher abundance of degenerating cells, pyknotic nuclei and cellular debris in the gut of exposed larvae in respect to control. The comparative analyses performed in this work allowed to characterize the specificity of action of the PVC-MPs on the two species, underlining the importance of exploring a large spectrum of endpoints to offer adequate protection in the emerging fields of microplastic research.


Asunto(s)
Microplásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua , Xenopus laevis , Animales , Cloruro de Polivinilo/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos
7.
Reprod Toxicol ; 107: 140-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923091

RESUMEN

In compliance to animal welfare 3Rs principle there is a great demand for refined tests alternative to classical mammal teratogenicity tests. We propose a refined alternative amphibian method (R-FETAX) to evaluate chemical induced embryotoxicity. The human foetal valproate spectrum disorder (FVSD) characteristics are morphological defects (including cranio-facial, neural tube defects) and behavioural alterations due to valproate (VPA) exposure in pregnancy. Vertebrate assays to evaluate FVSD include classical and alternative mammal (implying adult sacrifice), and non-mammal developmental models (zebrafish, amphibians, chick). Among these latter only zebrafish assays report in the same test both morphological and behavioural examinations. Compared to zebrafish, the amphibian Xenopus laevis excels having a more comparable organ development and morphology to mammalian systems. We used X. laevis embryos exposed during developmental specific windows to VPA therapeutic concentrations. Different VPA effects were observed depending on the exposure window: concentration-related embryo-lethal and teratogenic effects (neural tube, facial, tail defects) were observed in groups exposed at the organogenetic phylotypic stages. Neurobehavioral deficits were described using a functional swimming test at the highest VPA concentration exposure during the phylotypic stages and at any concentration during neurocognitive competent stages. Malformations were compared to those obtained in a mammalian assay (the rat post-implantation whole embryo culture method, WEC), that we used in the past to evaluate VPA teratogenicity. R-FETAX and WEC data were modelled and their relative sensitivity was calculated. We suggest the amphibian R-FETAX as a refined windowed alternative test for the evaluation of chemicals inducing both morphological and behavioural anomalies, including VPA.


Asunto(s)
Anomalías Inducidas por Medicamentos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Ácido Valproico/efectos adversos , Ácido Valproico/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Embarazo , Ratas , Natación , Xenopus laevis
8.
Environ Int ; 163: 107200, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349910

RESUMEN

Three-dimensional (3D) structured organoids are the most advanced in vitro models for studying human health effects, but their application to evaluate the biological effects associated with microplastic exposure was neglected until now. Fibers from synthetic clothes and fabrics are a major source of airborne microplastics, and their release from dryer machines is poorly understood. We quantified and characterized the microplastic fibers (MPFs) released in the exhaust filter of a household dryer and tested their effects on airway organoids (1, 10, and 50 µg mL-1) by optical microscopy, scanning electron microscopy (SEM), confocal microscopy and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). While the presence of MPFs did not inhibit organoid growth, we observed a significant reduction of SCGB1A1 gene expression related to club cell functionality and a polarized cell growth along the fibers. The MPFs did not cause relevant inflammation or oxidative stress but were coated with a cellular layer, resulting in the inclusion of fibers in the organoid. This effect could have long-term implications regarding lung epithelial cells undergoing repair. This exposure study using human airway organoids proved suitability of the model for studying the effects of airborne microplastic contamination on humans and could form the basis for further research regarding the toxicological assessment of emerging contaminants such as micro- or nanoplastics.


Asunto(s)
Microplásticos , Plásticos , Humanos , Organoides , Textiles
9.
Birth Defects Res B Dev Reprod Toxicol ; 92(3): 189-94, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21594970

RESUMEN

BACKGROUND: The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. METHODS: Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. RESULTS: The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. CONCLUSION: The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Teratología , Tretinoina/farmacología , Triazoles/toxicidad , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Modelos Animales , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
Chemosphere ; 270: 129430, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33388502

RESUMEN

Polyethylene terephthalate (PET) is one of the main plastic polymers contaminating natural ecosystems. Although PET microplastics (PET-MPs) have been found in both aquatic and terrestrial ecosystems, the information concerning their potential toxicity towards terrestrial organisms is limited. The present study aimed at investigating the ingestion and the possible adverse effects induced by a 40-days exposure to irregular shaped PET-MPs toward the giant snail Achatina reticulata. Giant snails were exposed via the diet to two concentrations (1% and 10% w/w; i.e., g of PET-MPs/g of the administered food) of PET-MPs and their capability to ingest and egest PET-MPs was assessed together with an evaluation of their potential effects at biochemical and individual levels. Oxidative stress-related biomarkers (i.e., the amount of reactive oxygen species, the activity of antioxidant enzymes and lipid peroxidation) and DNA fragmentation were measured in the digestive gland isolated from snails as biochemical endpoints. Changes in growth trajectories, in terms of body weight and shell size, were considered as morphometric endpoints. Our results demonstrated that A. reticulata can efficiently ingest and egest PET-MPs. Whilst giant snails did not experience an oxidative stress condition, significant changes in their growth trajectories were observed, with PET-MPs-treated snails grew more and more quickly than the control group. Our results suggest that PET-MPs might represent a risk during early-life stages for terrestrial organisms.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Exposición Dietética , Ecosistema , Estrés Oxidativo , Plásticos/toxicidad , Tereftalatos Polietilenos , Caracoles , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Toxicol Rep ; 7: 510-519, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346517

RESUMEN

Vitamin A plays a vital role during embryo development as most precursor of embryonic retinoic acid, a key morphogen during embryogenesis. Carotenoids, including ß-carotene, are important vegetal source of Vitamin A and in contrast to teratogenic potential of animal-derived retinoids, ß-carotene is usually considered freed from embryotoxic effects and supplements in pregnancy with ß-carotene are suggested. The aim of the present work is to evaluate the effect of bulk and nano-encapsulated ß-carotene on embryo development, by using the animal model Frog Embryo Teratogenesis Assay: Xenopus- FETAX. Xenopus laevis embryos were exposed from late gastrula till pharyngula (the phylotypic stage for vertebrates) to the concentrations of BULK ß-carotene 150-3000 ng/mL and NANO ß-carotene 0.75-30 ng/mL. At pharyngula stage, some embryos were processed for whole mount neural crest cell immunostaining, while others embryos were allowed to develop till tadpole for morphological and histological evaluation of neural crest cells-derived structures. In this model, the nano-encapsulated ß-carotene induced specific malformations at craniofacial and eye level, while the bulk formulation only induced developmental delays. Finally, the applied alternative animal model resulted a rapid and sensitive screening method able to re-evaluate the teratogenic profile of nano-encapsulated micronutrients.

12.
Water Res ; 166: 115082, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31542550

RESUMEN

Plastic particle ingestion has become of concern as a possible threat to human health. Previous works have already explored the presence of microplastic (MP) in bottled drinking water as a source of MP intake. Here, we consider the release of MP particles from single-use PET mineral water bottles upon exposure to mechanical stress utilizing SEM plus EDS, which allows the implementation of morphological and elemental analysis of the plastic material surface and quantification of particle concentrations in sample water. The aim of this study was to better evaluate the sources of MP intake from plastic bottles, especially considering the effect of daily use on these bottles such as the abrasion of the plastic material. For that, we analysed MP release of PET bottlenecks and HDPE caps on their surfaces after a series of bottle openings/closings (1 x, 10 x, 100 x). Furthermore, we investigated, if the inner surface of the PET bottles released MPs, counted particle increase of the water and identified MPs in the PET bottled water after exposing the bottles to mechanical stress (squeezing treatment; none, 1 min, 10 min). The results showed a considerable increase of MP particle occurrence on the surface of PET and HDPE material (bottlenecks and caps) after opening and closing the bottles. After 100 times the effect was impressive, especially on caps. Moreover, great differences exist in cap abrasion between brands which uncovers a discrepancy in plastic behavior of brands. Interestingly, particle concentrations in the bottled mineral water did not significantly increase after exposure to mechanical stress (squeezing treatment). The morphological analysis of the inner wall surface of the bottles supported this observation, as no stress cracks could be detected after the treatment, implying that the bottles itself are not a consistent source of MP particles after this extent of mechanical stress. However, chances of MP ingestion by humans increase with frequent use of the same single-use plastic bottle, though only from the bottleneck-cap system.


Asunto(s)
Agua Potable , Aguas Minerales , Contaminantes Químicos del Agua , Humanos , Plásticos , Estrés Mecánico
13.
Chemosphere ; 231: 423-431, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31146134

RESUMEN

Microplastic (µPs) contamination represents a dramatic environmental problem threatening both aquatic and terrestrial organisms. Although several studies have highlighted the presence of µPs in aquatic environments, the information regarding their toxicity towards organisms is still scant. Moreover, most of the ecotoxicological studies of µPs have focused on marine organisms, largely neglecting the effects on freshwater species. The present study aimed at exploring the effects caused by 21-days exposure to three concentrations (0.125, 1.25 and 12.5 µg/mL) of two differently sized polystyrene microplastics (PµPs; 1 and 10 µm) to the Cladoceran Daphnia magna. The ingestion/egestion capability of daphnids (<24 h) and adults, the changes in individual growth and behavior, in terms of changes in swimming activity, phototactic behavior and reproduction, were investigated. Both particles filled the digestive tract of daphnids and adults within 24 h of exposure at all the tested concentrations. Ingested PµPs remained in the digestive tract even after 96 h in a clean medium. For both particles, an overall increase in body size of adults was noted at the end of the exposure to the highest tested concentrations, accompanied by a significant increase in swimming activity, in terms of distance moved and swimming velocity, and by an alteration of the phototactic behavior. A significant increase in the mean number of offspring after the exposure to the highest PµPs concentrations of different size was recorded. Polystyrene µPs can affect behavioral traits of D. magna leading to potentially harmful consequences on population dynamics of this zooplanktonic species.


Asunto(s)
Daphnia/fisiología , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos , Conducta Animal/efectos de los fármacos , Daphnia/efectos de los fármacos , Ingestión de Alimentos , Ecotoxicología , Agua Dulce , Reproducción/efectos de los fármacos , Natación , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 392(1): 110-8, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18166217

RESUMEN

Embryotoxic effects of Carbaryl (CB), a widely used carbamate insecticide, was evaluated by modified Frog Embryo Teratogenesis Assay-Xenopus (FETAX), coupled with a histopathological screening of the survived larvae. X. laevis embryos were exposed to 1, 2, 4, 8, 16 and 24 mg/L CB from stage 8 to stage 47. From an estimated LC50 of 20.28 mg/L and TC50 of 8.43 mg/L a TI of 2.41 was derived, indicating that CB is to be considered teratogenic for X. laevis embryos. The most characteristic terata, classified as abnormal tail flexure, involved a significant percentage of larvae from 1 mg/L CB onward, reaching 100% at 24 mg/L CB. Histopathological screening revealed tail musculature and notochord as the main targets for CB. Skeletal muscle lesions consisted of myotomes reduced in size, showing myocytes with disorganized contractile systems and irregular myosepta, coupled with disarranged myocyte apexes. Notochords from CB exposed larvae appeared wavy or bent, with irregular connective sheaths and histologically characterized by protrusions of fibrous matrix and inclusions of ectopic cell masses. This axial-skeletal damage was hypothesized to be related both to the inhibition of acetylcholinesterase, with consequent muscular tetanic spasms, and to disorders in the organization of the connective tissue matrix surrounding the notochord.


Asunto(s)
Tipificación del Cuerpo , Carbaril/toxicidad , Embrión no Mamífero/efectos de los fármacos , Insecticidas/toxicidad , Xenopus laevis/embriología , Animales , Inhibidores de la Colinesterasa/toxicidad
15.
Environ Sci Pollut Res Int ; 25(34): 34644-34651, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30317408

RESUMEN

A growing number of studies have highlighted the contamination and the effects towards organisms of diverse microplastics (µPs) in the marine environment. Surprisingly, although the main sources of µPs for marine environments are inland surface waters, the information on the occurrence and the effects of µPs in freshwater ecosystems is still scant. Thus, the aim of the present work is to investigate the ingestion and possible adverse effects due to the exposure to polystyrene µPs (PSµPs; Ø = 3 µm) on tadpoles of the Amphibian Xenopus laevis. Larvae at the developmental stage 36, prior to mouth opening, were exposed under semi-static conditions to 0.125, 1.25, and 12.5 µg mL-1 of PSµPs, and allowed to develop until stage 46. At the end of the exposure, the digestive tract and the gills from exposed and control tadpoles were microscopically examined, as well as changes in body growth and swimming activity. PSµPs were observed in tadpoles' digestive tract, but not in the gills, from each tested concentration. However, neither body growth nor swimming activity were affected by PSµPs exposure. Our results demonstrated that PSµPs can be ingested by tadpoles, but they did not alter X. laevis development and swimming behavior at least during early-life stages, also at high, unrealistic concentrations.


Asunto(s)
Larva/efectos de los fármacos , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/crecimiento & desarrollo , Animales , Ecotoxicología/métodos , Femenino , Agua Dulce , Tracto Gastrointestinal/efectos de los fármacos , Branquias/química , Branquias/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Natación
16.
Nanotoxicology ; 12(3): 201-223, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385892

RESUMEN

The acute toxicity of three differently shaped carbon nanomaterials (CNMs) was studied on Daphnia magna, comparing the induced effects and looking for the toxic mechanisms. We used carbon nano-powder (CNP), with almost spherical primary particle morphology, multi-walled carbon nanotubes (CNTs), tubes of multi-graphitic sheets, and cubic-shaped carbon nanoparticles (CNCs), for which no ecotoxicological data are available so far. Daphnids were exposed to six suspensions (1, 2, 5, 10, 20 and 50 mg L-1) of each CNM, and then microscopically analyzed. Ultrastructural analyses evidenced cellular uptake of nanoparticle in CNP and CNT exposed groups, but not in samples exposed to CNCs. Despite this difference, very similar effects were observed in tissues exposed to the three used CNMs: empty spaces between cells, cell detachment from the basal lamina, many lamellar bodies and autophagy vacuoles. These pathological figures were qualitatively similar among the three groups, but they differed in frequency and severity. CNCs caused the most severe effects, such as partial or complete dissolution of the brush border and thinning of the digestive epithelium. Being the cubic shape not allowed to be internalized into cells, but more effective than others in determining physical damages, we can conclude that shape is an important factor for driving nanoparticle uptake by cells and for determining the acute toxicological endpoints. Shape also plays a key role in determining the kind and the severity of pathologies, which are linked to the physical interactions of CNMs with the exposed tissues.


Asunto(s)
Daphnia/efectos de los fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Grafito/química , Grafito/toxicidad , Suspensiones
17.
Environ Int ; 33(5): 642-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17328953

RESUMEN

Tire debris (TD) and its organic components were identified as a main source of PM10 atmospheric and water pollution. Because few data are available on the embryotoxic effects of TD organic components, the lethal and teratogenic potential of tire debris organic extract (TDOE) was evaluated using the frog embryo teratogenesis assay-Xenopus (FETAX), coupled with a histopathological screening of the survived larvae. From stage 8 to stage 47, Xenopus laevis embryos were exposed to TDOE at concentrations of 50, 80, 100, 120 and 140 mg/L. The results showed 50 mg/L TDOE to be the non-observable effect concentration (NOEC). TDOE mortality at 80 mg/L was significantly higher than the control, but did not increase further with higher concentrations. A good concentration-response was observed for percentages of malformed larva and from 80 mg/L on these percentages were significantly higher than the control. Therefore, probit analysis gave a 144.6 mg/L TC50. At 120 and 140 mg/L, many larvae were plurimalformed. The most frequent alterations observed were abnormal gut coiling, microphthalmia, monolateral anophthalmia, and narrowing eyes. The histological screening mainly revealed ocular malformations such as double retina, retina nervous cell layer coiling, and altered lens. Moreover severe vacuolisation and necrosis were scored in liver and axial musculature. These results strongly support the assumption that TDOE is a powerful teratogen for X. laevis.


Asunto(s)
Contaminantes Ambientales/toxicidad , Material Particulado/toxicidad , Teratógenos/toxicidad , Xenopus laevis/anomalías , Animales , Butadienos , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Anomalías del Ojo/inducido químicamente , Femenino , Hemiterpenos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Pentanos , Polímeros , Cola (estructura animal)/efectos de los fármacos , Cola (estructura animal)/patología
18.
Int J Environ Res Public Health ; 12(8): 8828-48, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26225989

RESUMEN

The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1-100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.


Asunto(s)
Anomalías Inducidas por Medicamentos/etiología , Nanopartículas/toxicidad , Teratógenos/toxicidad , Óxido de Zinc/toxicidad , Anomalías Inducidas por Medicamentos/embriología , Animales , Bioensayo , Anomalías Congénitas , Femenino , Masculino , Nanopartículas/química , Tamaño de la Partícula , Teratógenos/química , Xenopus laevis , Óxido de Zinc/química
19.
Toxicol Sci ; 146(1): 16-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820130

RESUMEN

The increased resistances to conventional antibiotics determine a strong need for new antibacterials, and specific syntheses at the nanoscale promise to be helpful in this field. A novel Zinc-doped Copper oxide nanocomposite (nZn-CuO) has been recently sonochemically synthesized and successfully tested also against multi-drug resistant bacteria. After synthesis and characterization of the physicochemical properties, the new nZn-CuO is here evaluated by the Frog Embyo Teratogenesis Assay-Xenopus test for its toxicological potential and this compared with that of nCuO and nZnO synthesized under the same conditions. No lethal effects are observed, while malformations and growth retardation slightly increase after nZn-CuO exposure. Nevertheless, these effects are smaller than those of nZnO. NP uptake by embryo tissues increase significantly with increasing NP concentrations, while no significant accumulation and adverse effects are seen after exposure to soluble Cu(2+) and Zn(2+) at the concentrations dissolved from the NPs. Key oxidative response genes are upregulated by nZn-CuO, as well as by nCuO and nZnO, suggesting the common mechanism of action. Considering the enhanced biocidal activity shown by the nanocomposite, together with the results presented in this study, we can affirm that the doping of the metal oxide nanoparticles should be considered a useful tool to engineer a safer nano-antibacterial.


Asunto(s)
Antibacterianos/farmacología , Cobre/toxicidad , Nanocompuestos , Zinc/química , Animales , Antibacterianos/química , Antibacterianos/toxicidad , Cobre/química , Desarrollo Embrionario/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
20.
Aquat Toxicol ; 69(2): 175-88, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15261453

RESUMEN

The DDT contamination of Lake Maggiore (Northern Italy) has been monitored since a serious pollution event occurred in 1996. To assess the environmental risk associated with this contamination, bioaccumulation data coupled with histopathological markers were evaluated on zebra mussel populations from two different contaminated sites from April 2001 to April 2002. Biomonitoring results showed high DDT pollution in 2001 because of a flood which transported DDTs still contained in the sediments of a polluted river to the lake. DDT concentrations reached values of 4-5 microg/g lipids, higher than those recorded in other industrialized countries but comparable to levels measured in developing ones. In the ovaries of the most highly polluted mussels, histological analyses showed a delay in oocyte maturation and a high incidence of pathological pictures mainly referable to oocyte degeneration and haemocytic infiltration. Moreover, despite the presence of mature sperms, in 2001 first male gamete release occurred about 2 months later than in females. These results indicated a neuroendocrine interference of DDT on Dreissena polymorpha reproduction and also showed that these invertebrates can be successfully used to evaluate ecological implications due to exposure to endocrine disruptors in freshwater environments.


Asunto(s)
Bivalvos/metabolismo , DDT/farmacocinética , Monitoreo del Ambiente/estadística & datos numéricos , Contaminantes Químicos del Agua/farmacocinética , Animales , Bivalvos/efectos de los fármacos , Cromatografía de Gases , DDT/toxicidad , Femenino , Agua Dulce , Técnicas Histológicas , Italia , Masculino , Oocitos/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Reproducción/efectos de los fármacos , Razón de Masculinidad , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA