Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Antimicrob Chemother ; 78(10): 2442-2450, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37574665

RESUMEN

OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.


Asunto(s)
Ceftazidima , Escherichia coli , Humanos , Ceftazidima/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Combinación de Medicamentos , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
2.
Eur J Clin Microbiol Infect Dis ; 40(8): 1779-1785, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33616788

RESUMEN

One hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-ß-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/efectos de los fármacos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Qatar/epidemiología , Adulto Joven
3.
mBio ; 15(2): e0287423, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38179965

RESUMEN

ß-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest ß-lactam agents. CMY-185 is a CMY-2-like ß-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest ß-lactam agents with altered bulky side chains and rejecting the binding of ß-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the ß-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated ß-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how ß-lactamases may incrementally alter their structures to escape multiple advanced ß-lactam agents.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Humanos , Ceftazidima/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas/farmacología , Combinación de Medicamentos , Cefiderocol , beta-Lactamasas/metabolismo , Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana
4.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778324

RESUMEN

Objectives: To characterize a bla CMY variant associated with ceftazidime-avibactam (CZA) resistance from a serially collected Escherichia coli isolate. Methods: A patient with an intra-abdominal infection due to recurrent E. coli was treated with CZA. On day 48 of CZA therapy, E. coli with a CZA MIC of >256 mg/L was identified from abdominal drainage. Illumina WGS was performed on all isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for CZA resistance. Results: WGS revealed that all three isolates were E. coli ST410. The CZA-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called bla CMY-185 , harbored on an IncIγ-type conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2 including A114E, Q120K, V211S, and N346Y and conferred high-level CZA resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced CZA susceptibility. However, double and triple mutants containing N346Y previously associated with CZA resistance in other AmpC enzymes, conferred CZA MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to the steric hindrance between the side chain of Y346 and the sulfate group of avibactam. Conclusion: We identified CZA resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer CZA resistance.

5.
Am J Infect Control ; 48(11): 1341-1347, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32334004

RESUMEN

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) is an urgent public health threat globally. Limited data are available regarding the epidemiology of CRE in South Florida. We describe the epidemiology of CRE within a large public healthcare system in Miami, FL, the experience with an internal registry, active surveillance testing, and the impact of infection prevention practices. METHODS: Retrospective cohort study in 4 hospitals from a large healthcare system in Miami-Dade County, FL from 2012 to 2016. The internal registry included all CRE cases from active surveillance testing from rectal and/or tracheal screening occurring in the intensive care units of 2 of the hospitals and clinical cultures across the healthcare system. All CRE cases were tagged in the electronic medical record and automatically entered into a platform for automatic infection control surveillance. The system alerted about new cases, readmissions, and transfers. RESULTS: A total of 371 CRE cases were identified. The overall prevalence was 0.077 cases per 100 patient-admissions; the admission prevalence was 0.019 per 100 patient-admissions, and the incidence density was 1.46 cases per 10,000 patient-days. Rates increased during the first 3 years of the study and declined later to a lower level than at the beginning of study period. CONCLUSIONS: Active surveillance testing and the use of an internal registry facilitated prompt identification of cases contributing to control increasing rates of CRE by rapid implementation of infection prevention strategies.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infección Hospitalaria , Infecciones por Enterobacteriaceae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Atención a la Salud , Enterobacteriaceae , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/epidemiología , Florida/epidemiología , Hospitales , Humanos , Sistema de Registros , Estudios Retrospectivos , beta-Lactamasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA