Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Oncol ; 34(3): 300-314, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494005

RESUMEN

BACKGROUND: New precision medicine therapies are urgently required for glioblastoma (GBM). However, to date, efforts to subtype patients based on molecular profiles have failed to direct treatment strategies. We hypothesised that interrogation of the GBM tumour microenvironment (TME) and identification of novel TME-specific subtypes could inform new precision immunotherapy treatment strategies. MATERIALS AND METHODS: A refined and validated microenvironment cell population (MCP) counter method was applied to >800 GBM patient tumours (GBM-MCP-counter). Specifically, partition around medoids (PAM) clustering of GBM-MCP-counter scores in the GLIOTRAIN discovery cohort identified three novel patient clusters, uniquely characterised by TME composition, functional orientation markers and immune checkpoint proteins. Validation was carried out in three independent GBM-RNA-seq datasets. Neoantigen, mutational and gene ontology analysis identified mutations and uniquely altered pathways across subtypes. The longitudinal Glioma Longitudinal AnalySiS (GLASS) cohort and three immunotherapy clinical trial cohorts [treatment with neoadjuvant/adjuvant anti-programmed cell death protein 1 (PD-1) or PSVRIPO] were further interrogated to assess subtype alterations between primary and recurrent tumours and to assess the utility of TME classifiers as immunotherapy biomarkers. RESULTS: TMEHigh tumours (30%) displayed elevated lymphocyte, myeloid cell immune checkpoint, programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 transcripts. TMEHigh/mesenchymal+ patients featured tertiary lymphoid structures. TMEMed (46%) tumours were enriched for endothelial cell gene expression profiles and displayed heterogeneous immune populations. TMELow (24%) tumours were manifest as an 'immune-desert' group. TME subtype transitions upon recurrence were identified in the longitudinal GLASS cohort. Assessment of GBM immunotherapy trial datasets revealed that TMEHigh patients receiving neoadjuvant anti-PD-1 had significantly increased overall survival (P = 0.04). Moreover, TMEHigh patients treated with adjuvant anti-PD-1 or oncolytic virus (PVSRIPO) showed a trend towards improved survival. CONCLUSIONS: We have established a novel TME-based classification system for application in intracranial malignancies. TME subtypes represent canonical 'termini a quo' (starting points) to support an improved precision immunotherapy treatment approach.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral , Recurrencia Local de Neoplasia , Inmunoterapia/métodos , Neoplasias Encefálicas/tratamiento farmacológico
2.
Cell Death Dis ; 7: e2087, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26844701

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers in the Western world. 5-Fluorouracil (5FU)-based chemotherapy (CT) remains the mainstay treatment of CRC in the advanced setting, and activates executioner caspases in target cells. Executioner caspases are key proteins involved in cell disassembly during apoptosis. Activation of executioner caspases also has a role in tissue regeneration and repopulation by stimulating signal transduction and cell proliferation in neighbouring, non-apoptotic cells as reported recently. Tissue microarrays (TMAs) consisting of tumour tissue from 93 stage II and III colon cancer patients were analysed by immunohistochemistry. Surprisingly, patients with low levels of active Caspase-3 had an increased disease-free survival time. This was particularly pronounced in patients who received 5FU-based adjuvant CT. In line with this observation, lower serum levels of active Caspase-3 were found in patients with metastasised CRC who revealed stable disease or tumour regression compared with those with disease progression. The role of Caspase-3 in treatment responses was explored further in primary human tumour explant cultures from fresh patient tumour tissue. Exposure of explant cultures to 5FU-based CT increased the percentage of cells positive for active Caspase-3 and Terminal Deoxynucleotidyl Transferase dUTP Nick end Labelling (TUNEL), but also the expression of regeneration and proliferation markers ß-Catenin and Ki-67, as well as cyclooxygenase-2 (COX-2). Of note, selective inhibition of Caspase-3 with Ac-DNLD-CHO, a selective, reversible inhibitor of Caspase-3, significantly reduced the expression of proliferation markers as well as COX-2. Inhibition of COX-2 with aspirin or celecoxib did not affect Caspase-3 levels but also reduced Ki-67 and ß-Catenin levels, suggesting that Caspase-3 acted via COX-2 to stimulate cell proliferation and tissue regeneration. This indicates that low levels of active Caspase-3 may represent a new predictor of CT responsiveness, and inhibition of Caspase-3, or antagonising downstream effectors of Caspase-3 paracrine signalling, such as COX-2 may improve patient outcomes following CT in advanced CRC.


Asunto(s)
Caspasa 3/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Fluorouracilo/farmacología , Antimetabolitos Antineoplásicos/farmacología , Caspasa 3/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Análisis de Matrices Tisulares
3.
Radiat Oncol ; 10: 131, 2015 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-26071313

RESUMEN

BACKGROUND: The mainstay of treatment in rectal cancer is neoadjuvant radio chemotherapy prior to surgery, in an attempt to downstage the tumour, allowing for more complete removal during surgery. In 40 % of cases however, this neoadjuvant radio chemotherapy fails to achieve tumour regression, partly due insufficient apoptosis signaling. X-linked Inhibitor of Apoptosis Protein (XIAP) is an anti-apoptotic protein that has been reported to contribute to disease progression and chemotherapy resistance. METHODS: We obtained rectal biopsy normal and matched tumour tissue from 29 rectal cancer patients with varying degrees of tumour regression, and using Western blot, examined anti-apoptotic XIAP and pro-apoptotic Smac protein levels in these tissues, with the aim to examine whether disturbed XIAP/Smac levels may be an indicator of neoadjuvant radio chemotherapy resistance. Expression of inhibitor of apoptosis proteins cIAP-1 and cIAP-2 was also examined. RESULTS: We found that levels of XIAP increased in accordance with the degree of radio chemotherapy resistance of the tissue. Levels of this protein were also significantly higher in tumour tissue, compared to matched normal tissue in highly resistant tissue. In contrast, Smac protein levels did not increase with radio chemotherapy resistance, and the protein was similarly expressed in normal and tumour tissue, indicating a shift in the balance of these proteins. Post treatment surgical resection tissue was available for 8 patients. When we compared matched tissue pre- and post- radio chemotherapy we found that XIAP levels increased significantly during treatment in both normal and tumour tissue, while Smac levels did not change. cIAP-1 and cIAP-2 levels were not differentially expressed in varying degrees of radio chemotherapy resistance, and neoadjuvant therapy did not alter expression of these proteins. CONCLUSION: These data indicate that disturbance of the XIAP/Smac balance may be a driver of radio chemotherapy resistance, and hence high levels of XIAP may be a useful indicator of neoadjuvant radio chemotherapy resistance in rectal cancer. Moreover, as XIAP levels increase with radio chemotherapy it is possible that a subset of more resistant tumour cells survive this treatment and may be resistant to further adjuvant treatment. Patients with resistant tumours highly expressing XIAP may benefit from alternative treatment strategies, such as Smac mimetics post neoadjuvant radio chemotherapy.


Asunto(s)
Biomarcadores de Tumor/análisis , Quimioradioterapia , Resistencia a Antineoplásicos/fisiología , Péptidos y Proteínas de Señalización Intracelular/análisis , Proteínas Mitocondriales/análisis , Terapia Neoadyuvante , Proteínas de Neoplasias/análisis , Tolerancia a Radiación/fisiología , Neoplasias del Recto/química , Proteína Inhibidora de la Apoptosis Ligada a X/análisis , Adulto , Anciano , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Proteínas Reguladoras de la Apoptosis , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Proteínas Inhibidoras de la Apoptosis/análisis , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Proteínas Inhibidoras de la Apoptosis/genética , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Ubiquitina-Proteína Ligasas/análisis , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Proteína Inhibidora de la Apoptosis Ligada a X/biosíntesis , Proteína Inhibidora de la Apoptosis Ligada a X/genética
4.
J Mol Med (Berl) ; 93(3): 315-26, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25388617

RESUMEN

UNLABELLED: In locally advanced rectal cancer, neoadjuvant chemoradiotherapy is performed prior to surgery to downstage the tumour. Thirty to 40 % of patients do not respond. Defects in apoptotic machinery lead to therapy resistance; however, to date, no study quantitatively assessed whether B cell lymphoma 2 (BCL2)-dependent regulation of mitochondrial apoptosis, effector caspase activation downstream of mitochondria or a combination of both predicts patient responses. In a cohort of 20 rectal cancer patients, we performed protein profiling of tumour tissue and employed validated ordinary differential equation-based systems models of apoptosis signalling to calculate the ability of cancer cells to undergo apoptosis. Model outputs were compared to clinical responses. Systems modelling of BCL2-signalling predicted patients in the poor response group (p = 0.0049). Systems modelling also demonstrated that rectal cancers depended on BCL2 rather than B cell lymphoma-extra large (BCL(X)L) or myeloid cell leukemia 1 (MCL1) for survival, suggesting that poor responders may benefit from therapy with selective BCL2 antagonists. Dynamic modelling of effector caspase activation could not stratify patients with poor response and did not further improve predictive power. We deliver a powerful patient stratification tool identifying patients who will likely not benefit from neoadjuvant chemoradiotherapy and should be prioritised for surgical resection or treatment with BCL2 antagonists. KEY MESSAGES: Modelling BCL2-family proteins identifies patients unresponsive to therapy. Caspase activation downstream of mitochondria cannot identify these patients. Rectal tumours of poor responders are BCL2- but not BCL-XL-dependent. DR_MOMP allows clinicians to identify patients who would not benefit from therapy. DR_MOMP is also a useful patient stratification tool for BCL2 antagonists.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias del Recto/metabolismo , Adulto , Anciano , Apoptosis , Quimioradioterapia Adyuvante , Daño del ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Terapia Neoadyuvante , Neoplasias del Recto/terapia , Transducción de Señal , Resultado del Tratamiento
5.
Proc Natl Acad Sci U S A ; 88(18): 7998-8002, 1991 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-1910172

RESUMEN

The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection.


Asunto(s)
Células Dendríticas/microbiología , VIH-1/crecimiento & desarrollo , Separación Celular , Células Dendríticas/citología , Productos del Gen gag/metabolismo , Proteína p24 del Núcleo del VIH , Antígenos HLA-D/metabolismo , Humanos , Microscopía Electrónica de Rastreo , Proteínas del Núcleo Viral/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA