Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 238303, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905651

RESUMEN

Active solids such as cell collectives, colloidal clusters, and active metamaterials exhibit diverse collective phenomena, ranging from rigid body motion to shape-changing mechanisms. The nonlinear dynamics of such active materials remains, however, poorly understood when they host zero-energy deformation modes and when noise is present. Here, we show that stress propagation in a model of active solids induces the spontaneous actuation of multiple soft floppy modes, even without exciting vibrational modes. By introducing an adiabatic approximation, we map the dynamics onto an effective Landau free energy, predicting mode selection and the onset of collective dynamics. These results open new ways to study and design living and robotic materials with multiple modes of locomotion and shape change.

2.
Phys Rev Lett ; 130(2): 028201, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706411

RESUMEN

The recent finding of collective actuation in active solids-solids embedded with active units-is a new promise for the design of multifunctional materials with genuine autonomy, and a better understanding of dense biological systems. Here, we combine the experimental study of centimetric model active solids, the numerical study of an agent-based model, and theoretical arguments to reveal a new form of collective actuation and how mechanical tension can serve as a general mechanism for transitioning between different collective actuation regimes. The presence of hysteresis when varying tension back and forth highlights the nontrivial selectivity of collective actuations.

3.
Phys Rev E ; 109(2-1): 024606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491601

RESUMEN

Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when the elasto-active feedback, which generically couples the reorientation of the active forces and the elastic stress, is large enough. In the absence of noise, collective actuation takes the form of a strong condensation of the dynamics on a specific pair of modes and their generalized harmonics. Here we report experiments conducted with centimetric active elastic structures, where collective oscillation takes place along the single lowest energy mode of the system, gapped from the other modes because of the system's geometry. Combining the numerical and theoretical analysis of an agent-based model, we demonstrate that this form of collective actuation is noise-induced. The effect of the noise is first analyzed in a single-particle toy model that reveals the interplay between the noise and the specific structure of the phase space. We then show that in the continuous limit, any finite amount of noise turns this new form of transition to collective actuation into a bona fide supercritical Hopf bifurcation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA