Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(32): E4354-63, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26195743

RESUMEN

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas y Procedimientos Diagnósticos/instrumentación , Electricidad , Nanoestructuras/química , Línea Celular Tumoral , Coinfección/diagnóstico , Ambiente , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Microfluídica , Concentración Osmolar , Reproducibilidad de los Resultados , Temperatura
2.
Chem Soc Rev ; 46(2): 366-388, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-27841420

RESUMEN

Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.


Asunto(s)
Técnicas Biosensibles , Fotones , Sistemas de Atención de Punto , Humanos , Nanoestructuras/química
3.
Small ; 12(9): 1222-1229, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26523938

RESUMEN

There is an emerging need for portable, robust, inexpensive, and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use, and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia, and chronic fatigue syndrome. Here, a magnetic levitation-based diagnosis system is presented in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, an easy-to-use, smartphone incorporated levitation system for cell analysis is introduced. Using our portable imaging magnetic levitation (i-LEV) system, it is shown that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single-cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications.


Asunto(s)
Teléfono Celular , Eritrocitos/patología , Imagenología Tridimensional/métodos , Magnetismo , Recuento de Células Sanguíneas , Humanos , Leucocitos/patología , Análisis de la Célula Individual
4.
Nano Lett ; 12(7): 3861-6, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22698062

RESUMEN

Many types of cancer and neurodegenerative diseases are caused by abnormalities and variations in the genome. We have designed a high-resolution imaging technique with high throughput and low cost for determining structural variations of genes related to genetic diseases. We initially mapped all seven nicking sites of Nb.BbvCI endonuclease enzyme on lambda DNA. Then we resolved densely labeled patterns of 107 nicking sites on human BAC DNA that is digested by Nb.BsmI and Nb.BbvCI endonuclease enzymes. This high density resulted in several dyes being closer together than the diffraction limit. Overall, detailed DNA nicking sites mapping with 100 bp resolution was achieved, which has the potential to reveal information about genetic variance and to facilitate medical diagnosis of several genetic diseases.


Asunto(s)
Bacteriófago lambda/genética , Mapeo Cromosómico , ADN/genética , Bacteriófago lambda/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Variación Genética/genética , Humanos
5.
Am J Phys Med Rehabil ; 102(2): 130-136, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550378

RESUMEN

OBJECTIVES: The aims of the study were to investigate the relationship between sarcopenia and renin-angiotensin system-related disorders and to explore the effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on muscle mass/function and physical performance. DESIGN: This multicenter, cross-sectional study was performed using ISarcoPRM algorithm for the diagnosis of sarcopenia. RESULTS: Of the 2613 participants (mean age = 61.0 ± 9.5 yrs), 1775 (67.9%) were hypertensive. All sarcopenia-related parameters (except chair stand test in males) were worse in hypertensive group than in normotensive group (all P < 0.05). When clinical/potential confounders were adjusted, hypertension was found to be an independent predictor of sarcopenia in males (odds ratio = 2.403 [95% confidence interval = 1.514-3.813]) and females (odds ratio = 1.906 [95% confidence interval = 1.328-2.734], both P < 0.001). After adjusting for confounding factors, we found that all sarcopenia-related parameters (except grip strength and chair stand test in males) were independently/negatively related to hypertension (all P < 0.05). In females, angiotensin-converting enzyme inhibitors users had higher grip strength and chair stand test performance values but had lower anterior thigh muscle thickness and gait speed values, as compared with those using angiotensin II receptor blockers (all P < 0.05). CONCLUSIONS: Hypertension was associated with increased risk of sarcopenia at least 2 times. Among antihypertensives, while angiotensin-converting enzyme inhibitors had higher muscle function values, angiotensin II receptor blockers had higher muscle mass and physical performance values only in females.


Asunto(s)
Hipertensión , Sarcopenia , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Sarcopenia/diagnóstico , Fuerza Muscular/fisiología , Estudios Transversales , Fuerza de la Mano/fisiología , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Antagonistas de Receptores de Angiotensina/farmacología
6.
Opt Express ; 20(11): 12177-83, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22714205

RESUMEN

To measure nanometric features with super-resolution requires that the stage, which holds the sample, be stable to nanometric precision. Herein we introduce a new method that uses conventional equipment, is low cost, and does not require intensive computation. Fiduciary markers of approximately 1 µm x 1 µm x 1 µm in x, y, and z dimensions are placed at regular intervals on the coverslip. These fiduciary markers are easy to put down, are completely stationary with respect to the coverslip, are bio-compatible, and do not interfere with fluorescence or intensity measurements. As the coverslip undergoes drift (or is purposely moved), the x-y center of the fiduciary markers can be readily tracked to 1 nanometer using a Gaussian fit. By focusing the light slightly out-of-focus, the z-axis can also be tracked to < 5 nm for dry samples and <17 nm for wet samples by looking at the diffraction rings. The process of tracking the fiduciary markers does not interfere with visible fluorescence because an infrared light emitting diode (IR-LED) (690 and 850 nm) is used, and the IR-light is separately detected using an inexpensive camera. The resulting motion of the coverslip can then be corrected for, either after-the-fact, or by using active stabilizers, to correct for the motion. We applied this method to watch kinesin walking with ≈ 8 nm steps.


Asunto(s)
Marcadores Fiduciales , Aumento de la Imagen/instrumentación , Microscopía Fluorescente/instrumentación , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
7.
Gels ; 8(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36005097

RESUMEN

Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell-cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.

8.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36230881

RESUMEN

BACKGROUND: Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. METHODS: We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. RESULTS: The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (p = 0.78). CONCLUSIONS: Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.

9.
Adv Healthc Mater ; 8(10): e1801517, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30946539

RESUMEN

Extracellular matrix (ECM) stiffness is correlated to malignancy and invasiveness of cancer cells. Although the mechanism of change is unclear, mechanical signals from the ECM may affect physical properties of cells such as their density profile. The current methods, such as Percoll density-gradient centrifugation, are unable to detect minute density differences. A magnetic levitation device is developed (i.e., MagDense platform) where cells are levitated in a magnetic gradient allowing them to equilibrate to a levitation height that corresponds to their unique cellular density. In application of this system, MDA-MB-231 breast and A549 lung cancer cells are cultured and overall differences in cell density are observed in response to increasing collagen fiber density. Overall, density values are significantly more spread out for MDA-MB-231 cells extracted from the 1.44 mg mL-1 collagen gels compared to those from 0.72 mg mL-1 collagen, whereas no significant difference with A549 cell lines is observed. The MagDense platform can determine differences in cellular densities under various microenvironmental conditions. The imaging of cancer cells in a magnetic levitation device serves as a unique tool to observe changes in phenotypic properties of cancer cells as they relate to micromechanical cues encoded by the ECM.


Asunto(s)
Matriz Extracelular/química , Magnetismo , Línea Celular Tumoral , Colágeno/química , Matriz Extracelular/metabolismo , Geles/química , Regulación Neoplásica de la Expresión Génica , Humanos , Microscopía Electrónica de Rastreo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
10.
Lab Chip ; 18(22): 3471-3483, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30276409

RESUMEN

Wearable technologies have potential to transform healthcare by providing continuous measurements of physiological parameters. Sensors that passively monitor physiological pressure without using electronic components are ideal for wearable contact lenses because they are easy to interface with the cornea and the external environment. Here, we report a passive integrated microfluidic sensor with a novel transduction mechanism that converts small strain changes into a large fluidic volume expansion, detectable by a smart-phone camera. The optimization of the sensor architecture and material properties results in a linear and stable sensor response. We have shown that the sensor has a detection limit of <0.06% for uniaxial and <0.004% for biaxial strain. We embedded our sensor in silicone contact lenses and measured the intraocular pressure induced strain in porcine eyes in the physiological range. The sensor's continuous operation capability for >19 hours and a lifetime reaching >7 months demonstrate its potential for long-term ophthalmic monitoring applications.


Asunto(s)
Presión Intraocular , Dispositivos Laboratorio en un Chip , Monitoreo Fisiológico/instrumentación , Estrés Mecánico , Dispositivos Electrónicos Vestibles , Animales , Diseño de Equipo , Porcinos
11.
Sci Rep ; 7(1): 3322, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607383

RESUMEN

Human Papillomavirus (HPV) infection has been recognized as the main etiologic factor in the development of various cancers including penile, vulva, oropharyngeal and cervical cancers. In the development of cancer, persistent HPV infections induce E6 and E7 oncoproteins, which promote cell proliferation and carcinogenesis resulting elevated levels of host antibodies (e.g., anti-HPV16 E7 antibody). Currently, these cancers are clinically diagnosed using invasive biopsy-based tests, which are performed only in centralized labs by experienced clinical staff using time-consuming and expensive tools and technologies. Therefore, these obstacles constrain their utilization at primary care clinics and in remote settings, where resources are limited. Here, we present a rapid, inexpensive, reliable, easy-to-use, customized immunoassay platform following a microfluidic filter device to detect and quantify anti-HPV16 E7 antibodies from whole blood as a non-invasive assisting technology for diagnosis of HPV-associated malignancies, especially, at primary healthcare and remote settings. The platform can detect and quantify anti-HPV16 E7 antibody down to 2.87 ng/mL. We further validated our immunoassay in clinical patient samples and it provided significantly high responses as compared to control samples. Thus, it can be potentially implemented as a pretesting tool to identify high-risk groups for broad monitoring of HPV-associated cancers in resource-constrained settings.


Asunto(s)
Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/aislamiento & purificación , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Femenino , Humanos , Inmunoensayo , Inmunoglobulina G/sangre , Masculino , Microfluídica , Persona de Mediana Edad , Neoplasias Orofaríngeas/sangre , Neoplasias Orofaríngeas/virología , Proteínas E7 de Papillomavirus/metabolismo , Reproducibilidad de los Resultados
12.
ACS Nano ; 11(1): 249-257, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27768850

RESUMEN

Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intracluster distances (d). From these data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P < 0.001). For comparison, the prediction accuracy was only 61% (P = 0.382) when the diffraction-limited averaged fluorescence intensity/cluster was used. Large clusters (N ≥ 3) with d > 50 nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d < 50 nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Modelos Lineales , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/química , Sondas Moleculares , Puntos Cuánticos/química
13.
Elife ; 62017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28749340

RESUMEN

Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers. We find that >90% of AMPARs labeled with fluorescent dyes or sQDs were diffusing in confined nanodomains in PSDs, which were stable for 15 min or longer. Less than 10% of sQD-AMPARs were extrasynaptic and highly mobile. In contrast, 5-10% of bQD-AMPARs were in PSDs and 90-95% were extrasynaptic as previously observed. Contrary to the hypothesis that AMPAR entry is limited by the occupancy of open PSD 'slots', our findings suggest that AMPARs rapidly enter stable 'nanodomains' in PSDs with lifetime >15 min, and do not accumulate in extrasynaptic membranes.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Densidad Postsináptica/metabolismo , Receptores AMPA/genética , Sinapsis/metabolismo , Animales , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/química , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Neuronas/ultraestructura , Densidad Postsináptica/ultraestructura , Cultivo Primario de Células , Transporte de Proteínas , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Ratas , Receptores AMPA/metabolismo , Coloración y Etiquetado/métodos , Sinapsis/ultraestructura , Factores de Tiempo
14.
Adv Drug Deliv Rev ; 103: 90-104, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27262924

RESUMEN

HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.


Asunto(s)
Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Técnicas Biosensibles/métodos , Técnicas Biosensibles/tendencias , Infecciones por VIH/diagnóstico , Infecciones por VIH/terapia , VIH-1/aislamiento & purificación , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Microfluídica/métodos , Microfluídica/tendencias , Nanomedicina/métodos , Nanomedicina/tendencias , Sistemas de Atención de Punto/tendencias , Carga Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA