Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Dev Dyn ; 252(3): 363-376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36153792

RESUMEN

BACKGROUND: The apical surface (AS) of epithelial cells is highly specialized; it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whether changes in their apical surface sizes are important for cortical morphogenesis and/or other aspects of neocortex development has not been thoroughly addressed. RESULTS: Here we show that apical progenitors are heterogeneous with respect to their apical surface area. In Efnb1 mutants, the size of the apical surface is modified and this correlates with discrete alterations of tissue organization without impacting apical progenitors proliferation. CONCLUSIONS: Altogether, our data reveal heterogeneity in apical progenitors AS area in the developing neocortex and shows a role for Ephrin B1 in controlling AS size. Our study also indicates that changes in AS size do not have strong repercussion on apical progenitor behavior.


Asunto(s)
Neocórtex , Neuronas , Animales , Neuronas/metabolismo , Transducción de Señal , Efrina-B1/metabolismo , Mamíferos/metabolismo
3.
Development ; 142(16): 2781-91, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26209645

RESUMEN

Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.


Asunto(s)
Encéfalo/embriología , Cadherinas/metabolismo , Proliferación Celular/fisiología , Células-Madre Neurales/fisiología , Tubo Neural/embriología , Animales , Western Blotting , Cadherinas/genética , Técnicas de Silenciamiento del Gen , Ratones , Microscopía Fluorescente , Tubo Neural/metabolismo , beta-Galactosidasa
4.
J Cell Sci ; 124(Pt 6): 958-68, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21378312

RESUMEN

MELK is a serine/threonine kinase involved in several cell processes, including the cell cycle, proliferation, apoptosis and mRNA processing. However, its function remains elusive. Here, we explored its role in the Xenopus early embryo and show by knockdown that xMELK (Xenopus MELK) is necessary for completion of cell division. Consistent with a role in cell division, endogenous xMELK accumulates at the equatorial cortex of anaphase blastomeres. Its relocalization is highly dynamic and correlates with a conformational rearrangement in xMELK. Overexpression of xMELK leads to failure of cytokinesis and impairs accumulation at the division furrow of activated RhoA - a pivotal regulator of cytokinesis. Furthermore, endogenous xMELK associates and colocalizes with the cytokinesis organizer anillin. Unexpectedly, our study reveals a transition in the mode of cytokinesis correlated to cell size and that implicates xMELK. Collectively, our findings disclose the importance of xMELK in cytokinesis during early development and show that the mechanism of cytokinesis changes during Xenopus early development.


Asunto(s)
División Celular , Citocinesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/genética , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Exp Cell Res ; 316(13): 2166-73, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20420823

RESUMEN

MELK (maternal embryonic leucine zipper kinase) is a cell cycle dependent protein kinase involved in diverse cell processes including cell proliferation, apoptosis, cell cycle and mRNA processing. Noticeably, MELK expression is increased in cancerous tissues, upon cell transformation and in mitotically-blocked cells. The question of how MELK protein level is controlled is therefore important. Here, we show that MELK protein is restricted to proliferating cells derived from either cancer or normal tissues and that MELK protein level is severely decreased concomitantly with other cell cycle proteins in cells which exit the cell cycle. Moreover, we demonstrate in human HeLa cells and Xenopus embryos that approximately half of MELK protein is degraded upon mitotic exit whereas another half remains stable during interphase. We show that the stability of MELK protein in M-phase is dependent on its phosphorylation state.


Asunto(s)
Embrión no Mamífero/enzimología , Endotelio Vascular/enzimología , Mitosis/fisiología , Neoplasias de la Próstata/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Células Cultivadas , Embrión no Mamífero/citología , Endotelio Vascular/citología , Fertilización , Células HeLa , Humanos , Masculino , Fosforilación , Neoplasias de la Próstata/patología , Venas Umbilicales/citología , Venas Umbilicales/enzimología , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
6.
Biochim Biophys Acta ; 1788(4): 755-60, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18952051

RESUMEN

Recent studies have revealed unexpected links between cell polarity and proliferation, suggesting that the polarized organization of cells is necessary to regulate growth. Drosophila melanogaster is a genetically simple model that is especially suited for the study of polarity and growth control, as polarized tissues undergo a well-defined pattern of proliferation and differentiation during the development. In addition, genetic studies have identified a number of tumor suppressor genes, which later studies have shown to be associated with junctions, or in the regulation of junctional proteins. We will explore in this review the links between growth and apical junction proteins in the regulation of growth control in Drosophila.


Asunto(s)
Uniones Adherentes/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Animales , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Receptores ErbB/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Neurofibromina 2/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología
7.
Dev Cell ; 48(6): 780-792.e4, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30853441

RESUMEN

FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.


Asunto(s)
Cadherinas/metabolismo , Riñón/embriología , Riñón/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , Animales , Cadherinas/química , Cadherinas/deficiencia , Eliminación de Gen , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Riñón/anomalías , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Regulación hacia Arriba
8.
Nat Commun ; 8: 14582, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28239148

RESUMEN

Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadherinas/metabolismo , Corazón/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteína 1 Similar a la Angiopoyetina , Animales , Animales Recién Nacidos , Cardiomegalia/genética , Cardiomegalia/patología , Proteínas de Ciclo Celular , Proliferación Celular , Desmosomas/metabolismo , Desmosomas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Biológicos , Unión Proteica , Ratas , Transducción de Señal , Proteínas Señalizadoras YAP
9.
Invest Ophthalmol Vis Sci ; 56(6): 4099-107, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26114487

RESUMEN

PURPOSE: The Fat family of atypical cadherins, originally identified in Drosophila, play diverse roles during embryogenesis and adult tissue maintenance. Among four mammalian members, Fat1 is essential for kidney and muscle organization, and is also essential for eye development; Fat1 knockout causes partial penetrant microphthalmia or anophthalmia. To account for the partial penetrance of the Fat1 phenotype, involvement of Fat4 in eye development was assessed. Lens phenotypes in Fat1 and 4 knockouts were also examined. METHODS: Fat1 and Fat4 mRNA expression was examined by in situ hybridization. Knockout phenotypes of Fat1 and Fat4 were analyzed by hematoxylin and eosin (H&E) and immunofluorescent staining. RESULTS: We found Fat4 knockout did not affect eye induction or enhance severity of Fat1 eye defects. Although Fat1 and Fat4 mRNAs are similarly expressed in the lens epithelial cells, only Fat1 knockout caused a fully penetrant lens epithelial cell defect, which was apparent at embryonic day 14.5 (E14.5). The columnar structure of the lens epithelial cells was disrupted and in some regions cell aggregates were formed. In these multilayered regions, apical cell junctions were fragmented and the apical-basal polarity was lost. EdU incorporation assay also showed enhanced proliferation in the lens epithelial cells. Interestingly, these defects were found mainly in the central zone of the epithelial layer. The lens epithelial cells of the germinative zone maintained their normal morphology and fiber differentiation occurred normally at the equator. CONCLUSIONS: These observations indicate that Fat1 is essential for lens epithelial cell polarity and proliferation but not for terminal differentiation.


Asunto(s)
Cadherinas/metabolismo , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/fisiología , Cristalino/metabolismo , Animales , Cadherinas/genética , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Uniones Intercelulares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo
10.
Nat Genet ; 45(11): 1300-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056717

RESUMEN

The regulated proliferation and differentiation of neural stem cells before the generation and migration of neurons in the cerebral cortex are central aspects of mammalian development. Periventricular neuronal heterotopia, a specific form of mislocalization of cortical neurons, can arise from neuronal progenitors that fail to negotiate aspects of these developmental processes. Here we show that mutations in genes encoding the receptor-ligand cadherin pair DCHS1 and FAT4 lead to a recessive syndrome in humans that includes periventricular neuronal heterotopia. Reducing the expression of Dchs1 or Fat4 within mouse embryonic neuroepithelium increased progenitor cell numbers and reduced their differentiation into neurons, resulting in the heterotopic accumulation of cells below the neuronal layers in the neocortex, reminiscent of the human phenotype. These effects were countered by concurrent knockdown of Yap, a transcriptional effector of the Hippo signaling pathway. These findings implicate Dchs1 and Fat4 upstream of Yap as key regulators of mammalian neurogenesis.


Asunto(s)
Cadherinas/genética , Corteza Cerebral/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Secuencia de Bases , Proteínas Relacionadas con las Cadherinas , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Anomalías Craneofaciales/genética , Deformidades Congénitas del Pie/genética , Técnicas de Silenciamiento del Gen , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Inestabilidad de la Articulación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Heterotopia Nodular Periventricular/genética , Fosfoproteínas/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Proteínas Señalizadoras YAP
11.
Curr Opin Cell Biol ; 21(6): 837-43, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19846288

RESUMEN

Control of cell number requires the coordinate regulation of cell proliferation and cell death. Studies in both the fly and mouse have identified the Hippo kinase pathway as a key signaling pathway that controls cell proliferation and apoptosis. Several studies have implicated the Hippo pathway in a variety of cancers. Recent studies have also revealed a role for the Hippo pathway in the control of cell fate decisions during development. In this review, we will cover the current model of Hippo signaling in development. We will explore the differences between the Hippo pathway in invertebrates and mammals, and focus on recent advances in understanding how this conserved pathway is regulated.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Apoptosis , Diferenciación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Humanos , Modelos Biológicos
12.
Dev Cell ; 16(3): 411-20, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19289086

RESUMEN

The Hippo kinase pathway plays a central role in growth regulation and tumor suppression from flies to man. The Hippo/Mst kinase phosphorylates and activates the NDR family kinase Warts/Lats, which phosphorylates and inhibits the transcriptional activator Yorkie/YAP. Current models place the FERM-domain protein Expanded upstream of Hippo kinase in growth control. To understand how Expanded regulates Hippo pathway activity, we used affinity chromatography and mass spectrometry to identify Expanded-binding proteins. Surprisingly we find that Yorkie is the major Expanded-binding protein in Drosophila S2 cells. Expanded binds Yorkie at endogenous levels via WW-domain-PPxY interactions, independently of Yorkie phosphorylation at S168, which is critical for 14-3-3 binding. Expanded relocalizes Yorkie from the nucleus, abrogating its nuclear activity, and it can regulate growth downstream of warts in vivo. These data lead to a new model whereby Expanded functions downstream of Warts, in concert with 14-3-3 proteins to sequester Yorkie in the cytoplasm, inhibiting growth activity of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Secuencias de Aminoácidos , Animales , Animales Modificados Genéticamente , Línea Celular , Citoplasma/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Biológicos , Proteínas Nucleares/genética , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transducción de Señal , Transactivadores/genética , Transfección , Proteínas Señalizadoras YAP
13.
Cell Cycle ; 5(8): 883-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16628004

RESUMEN

The protein kinase MELK is implicated in the control of cell proliferation, cell cycle and mRNA splicing. We previously showed that MELK activity is correlated with its phosphorylation level, is cell cycle dependent, and maximal during mitosis. Here we report on the identification of T414, T449, T451, T481 and S498 as residues phosphorylated in Xenopus MELK (xMELK) in M-phase egg extract. Phosphorylations of T449, T451, T481 are specifically detected during mitosis. Results obtained in vivo showed that MPF and MAPK pathways are involved in xMELK phosphorylation. In vitro, MPF and MAPK directly phosphorylate xMELK and MPF phosphorylates xMELK on T481. In addition, phosphorylation by MPF and MAPK enhances MELK activity in vitro. Taken together our results indicate that MELK phosphorylation by MPF and MAPK enhance its activity during M-phase.


Asunto(s)
División Celular , Sistema de Señalización de MAP Quinasas , Factor Promotor de Maduración/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Línea Celular , Mitosis , Datos de Secuencia Molecular , Oocitos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA