RESUMEN
Photoperiod plays a role in controlling the initiation and termination of reproduction in fish. Melatonin is an internal transducer of environmental photoperiod and is involved in regulating reproduction. The present study aimed to examine how melatonin impacts the transcript levels of kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormones (gnrh1), and the ß-subunit of gonadotropins (fshß and lhß) in the brain of the sapphire devil, a tropical damselfish with long photoperiod preference. Feeding mature females with melatonin-containing pellets inhibited increases in the transcript levels of kiss1, gnrh1, and lhß within 3 h. Continuous melatonin treatment for 1 week resulted in oocyte regression and downregulation of kiss2, gnrh1, fshß, and lhß. When the transcript levels of kiss1 and gnrh1 were measured at 4-h intervals in the brain of sapphire devil, a day-high/night-low fluctuation was observed. The hypothalamic-pituitary-gonadal (HPG) axis may be influenced by melatonin, exerting a negative effect at night because the transcript levels of aralkylamine N-acetyltransferase (aanat2) increased during the scotophase. The expression of aanat2 was higher under short-day than long-day conditions, suggesting that there is a seasonal change in melatonin levels at night. It was concluded that change in photoperiod becomes a key factor for controlling the hormone synthesis in the HPG axis through melatonin.
Asunto(s)
Melatonina , Perciformes , Reproducción , Animales , Femenino , Hormona Folículo Estimulante de Subunidad beta , Hormona Liberadora de Gonadotropina , Kisspeptinas/genética , Hormona Luteinizante de Subunidad beta , Melatonina/farmacología , Perciformes/fisiologíaRESUMEN
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Asunto(s)
Bagres , Melatonina , Animales , Encéfalo , Dopamina , Luz , FotoperiodoRESUMEN
The sapphire devil (Chrysiptera cyanea) is a tropical damselfish that undergoes active reproduction under long-day conditions. To elucidate the physiological regulation of the brain-pituitary-gonadal axis in female sapphire devil, we cloned and characterized the genes of two kisspeptins (kiss1 and kiss2), three gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), and the ß-subunit of two gonadotropins (fshß and lhß) and investigated the gene expression changes during ovarian development. Quantitative polymerase chain reaction analyses in various brain parts revealed high expression levels of kiss1, kiss2, and gnrh2 in the diencephalon; gnrh2 and gnrh3 in the telencephalon; and fshß and lhß in the pituitary. In situ hybridization (ISH) analyses revealed positive signals of kiss1 in the dorsal and ventral habenular nucleus and of kiss2 in the dorsal and ventral parts of the nucleus of the lateral recess. This analysis showed gnrh1 expression in the preoptic area (POA), suggesting that GnRH1 plays a stimulating role in the secretion of gonadotropins from the pituitary of the sapphire devil. High transcription levels of kiss1, kiss2, gnrh1, gnrh2, fshß, and lhß were observed in the brain during the late vitellogenic stage, suggesting their involvement in the physiological processes of vitellogenesis. Immersion of fish in estradiol-17ß (E2)-containing seawater resulted in increased expression of kiss2 and gnrh1 in their brains. This study showed that kiss-expressing neurons in the diencephalon are influenced by E2, leading to upregulation of gnrh1 in the POA and of fshß and lhß in the pituitary during vitellogenesis.
Asunto(s)
Encéfalo/fisiología , Perciformes/fisiología , Hipófisis/fisiología , Reproducción/fisiología , Animales , Femenino , Peces , Hormona Folículo Estimulante de Subunidad beta , Expresión Génica , Hormona Liberadora de Gonadotropina , Kisspeptinas , Hormona Luteinizante de Subunidad beta , Precursores de Proteínas , Ácido Pirrolidona Carboxílico/análogos & derivados , ARN Mensajero , VitelogénesisRESUMEN
In the neuroendocrine system controlling fish reproduction, dopamine (DA) acts as a gonadotropin inhibitory factor and plays a role in regulating gonadal development of certain species. The present study examined the effects of chemical destruction of dopaminergic neurons in the brain on DA production and ovarian development in the sapphire devil Chrysiptera cyanea, a reef-associated damselfish. The avidin-biotin-peroxidase complex method using an antibody against tyrosine hydroxylase (TH), a critical enzyme in the DA synthesis pathway, identified a population of dopaminergic neurons with somata in the anteroventral preoptic nucleus of the diencephalon and fibers terminating in the proximal pars distalis of the pituitary. Maintaining fish in seawater containing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 0.02 and 0.2 µg/mL for 2 days resulted in decreases in DA, 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite), and DA metabolic rate in the whole brain. The number of TH-positive neurons in the diencephalon decreased after 0.02 µg/mL MPTP treatment for 2 days. These results suggest that MPTP treatment destroys TH-positive neurons in the diencephalon, thereby decreasing the synthesis and release of DA from the brain. This treatment rescued ovarian development in fish with artificially retracted ovaries during the spawning season. The gonadosomatic index of MPTP-treated fish 5 and 7 days after treatment was significantly higher than that of control fish. Oocytes in the vitellogenic stages were observed in the ovaries of MPTP-treated fish, but not in control fish. These results suggest that DA in the brain drives ovarian development in the sapphire devil.
Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neurotoxinas/farmacología , Ovario/efectos de los fármacos , Perciformes/metabolismo , Análisis de Varianza , Animales , Acuicultura/métodos , Avidina/metabolismo , Western Blotting/veterinaria , Cromatografía Líquida de Alta Presión/veterinaria , Neuronas Dopaminérgicas/metabolismo , Femenino , Peroxidasa de Rábano Silvestre/metabolismo , Inmunohistoquímica/veterinaria , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Área Preóptica/citología , Área Preóptica/efectos de los fármacosRESUMEN
Fish are faced with a wide range of hydrostatic pressure (HP) in their natural habitats. Additionally, freshwater fish are occasionally exposed to rapid changes in HP due to heavy rainfall, flood and/or dam release. Accordingly, variations in HP are one of the most important environmental cues for fish. However, little information is available on how HP information is perceived and transmitted in the central nervous system of fish. The present study examined the effect of HP (water depth of 1.3 m) on the quantities of monoamines and their metabolites in the telencephalon, optic tectum, diencephalon, cerebellum (including partial mesencephalon) and vagal lobe (including medulla oblongata) of the goldfish, Carassius auratus, using high-performance liquid chromatography. HP affected monoamine and metabolite contents in restricted brain regions, including the telencephalon, cerebellum and vagal lobe. In particular, HP significantly increased the levels of dopamine (DA) in the telencephalon at 15 min and that of norepinephrine (NE) in the cerebellum at 30 min. In addition, HP also significantly increased locomotor activity at 15 and 30 min after HP treatment. It is possible that HP indirectly induces locomotion in goldfish via telencephalic DA and cerebellar NE neuronal activity.
Asunto(s)
Cerebelo/metabolismo , Dopamina/metabolismo , Carpa Dorada/metabolismo , Norepinefrina/metabolismo , Telencéfalo/metabolismo , Animales , Presión Hidrostática , Locomoción/fisiología , Actividad Motora/fisiologíaRESUMEN
The perception of periodical change in photoperiodic conditions by photosensory organs is the first step to initiating reproductive activity in fish. To date, it is not known how photoperiodic cues are endogenously transduced to the endocrine network of the brain-pituitary-gonad axis after the perception of photoperiodic stimuli. Because dopamine (DA) inhibits gonadotropin release from the pituitary in certain teleosts, it is likely that it is a key mediator of photoperiodic stimulation. We examined the relationship between photoperiodicity and dopaminergic activity in the brain of the sapphire devil Chrysiptera cyanea, which is a reef-associated damselfish and uses long-day conditions for triggering gonadal development. DA and 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite) were measured electrochemically with a high-performance liquid chromatography (HPLC) system, and then DOPAC/DA (metabolic rate of DA activity) was determined. Daily fluctuations in DA, DOPAC, and DOPAC/DA were observed under LD 12:12. Light-dark cycles, but not constant conditions, influenced DA and DOPAC contents as well as DOPAC/DA in the brain; DOPAC content and DOPAC/DA increased under LD 14:10, while DA increased under LD 10:14. When fish were reared in melatonin-containing water, DOPAC and DOPAC/DA, but not DA, decreased within 6h after treatment. Culturing the isolated brain with melatonin stimulated DA release into the medium. Active vitellogenesis in females during the reproductive season was suppressed by melatonin treatment. These results suggest that day length alters DA metabolism in the brain of the sapphire devil through fluctuations in melatonin caused by external light stimuli, and that inhibitory effects on gonadal development are partially controlled by interactions within the melatonin-DA system.
Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Luz , Melatonina/farmacología , Perciformes/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/efectos de la radiación , Femenino , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Gónadas/efectos de la radiación , Masculino , Fotoperiodo , Reproducción/efectos de los fármacosRESUMEN
Rotenone, commonly used as a pesticide in agriculture and as a piscicide in aquaculture, is a toxic compound that causes dopaminergic neuronal cell loss in the substantia nigra pars compacta of the brain. At the neuroendocrine level, dopamine (DA) drives behavioral (locomotion, emotion, feeding, and social interactions, etc.) and reproductive functions of fish. In the current investigation, we examined effects of rotenone toxicity on neurobehavioral and reproductive functions in whole brain and in selected brain regions in an Indian freshwater catfish, locally known as gulsha (Mystus cavasius). After fish were exposed to water containing rotenone at 0, 2.5, 25, and 250 µg/L for 2 days, significant reductions of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 µg/L ambient concentrations of rotenone. When fish were treated with rotenone at 250 µg/L concentration for 2 days, there was a significant reduction of DA, DOPAC and DOPAC/DA in diencephalon, DA and DOPAC in pituitary, and only DA in the telencephalon, compared with control fish. In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.
Asunto(s)
Bagres , Rotenona , Animales , Encéfalo , Neuronas Dopaminérgicas , Agua Dulce , Rotenona/toxicidadRESUMEN
Heavy metal pollution due to anthropogenic activities poses a great threat to aquatic organisms. The present study was conducted to evaluate the cytotoxic and genotoxic effects of hexavalent chromium (potassium dichromate) on hemato-biochemical, histo-pathological, and genetical changes in striped catfish Pangasianodon hypophthalmus. Three sub-lethal doses (0.8, 1.6, and 3.2 mg/L) of chromium (Cr) were selected and fish were exposed in vivo contrasting with a control (0 mg/L) for 30 days. The study revealed that various hemato-biochemical parameters showed a significant decrease in hemoglobin (Hb), red blood cells (RBCs), and blood glucose content, whereas white blood cells (WBCs) significantly increased in Cr exposed fish. Frequencies of all forms of structural abnormalities of erythrocytes (erythrocytic cellular abnormalities; ECA, erythrocytic nuclear abnormalities; ENA and erythroblasts; Ebs) were significantly increased in higher two test concentrations (1.6 and 3.2 mg/L) when compared to control. Differential leucocyte count exhibited significant increase in neutrophil and decrease in lymphocytes in the highest Cr treated group. The severity of various histo-pathological changes in the gills, liver, and kidney were increased considerably with the increase of Cr concentrations. Similarly, the amount of DNA (ng/µl) decreased significantly in blood and tissues of different vital organs where the liver showed the highest decline compared to control in a concentration-dependent manner. Taken altogether, P. hypophthalmus is susceptible to Cr and can be used as a bio-indicator to assess aquatic metal pollution.
Asunto(s)
Bagres , Contaminantes Químicos del Agua , Animales , Bagres/genética , Cromo/toxicidad , Eritrocitos , Branquias , Riñón , Hígado , Contaminantes Químicos del Agua/toxicidadRESUMEN
As a consequence of global warming, increase of water temperature is likely to alter physiological functions of fish. Hence, we examined the effects of high temperature on blood glucose, hematological parameters [hemoglobin (Hb), red blood cell (RBC), and white blood cell (WBC)], and nuclear and cellular structure of blood cells of common carp (Cyprinus carpio) after exposure to three temperature regimes (27, 31, and 35°C) for 14 days. Fish were sacrificed on 3, 7, and 14 days of exposure. The blood glucose level increased significantly in the fish exposed to 35°C compared to 27 and 31°C. The Hb and RBC contents decreased but WBC increased significantly in the blood of fish exposed to 35°C compared to 27 and 31°C at 7 and 14 days of exposure. Consequently, the frequencies of erythroblasts (Ebs), erythrocytic nuclear abnormalities (ENA), and erythrocytic cellular abnormalities (ECA) were found to be increased in the blood of fish exposed to 35°C compared to 27 and 31°C. There was a significant increase in neutrophils and decrease in lymphocytes in the highest temperature (35°C). With increasing temperature, dissolved oxygen (DO) decreased but free CO2 increased significantly during the study period. The present study demonstrated that common carp are better adapted to 27 and 31°C environmental temperatures, while the higher temperature 35°C is likely stressful to this fish species.