Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 142(7): 1254-66, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804736

RESUMEN

Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Nefronas/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas WT1/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular , ADN/genética , Activación Enzimática/efectos de los fármacos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones Noqueados , Modelos Animales , Nefronas/anomalías , Nefronas/embriología , Nefronas/patología , Técnicas de Cultivo de Órganos , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
J Neurooncol ; 131(3): 449-458, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27858267

RESUMEN

The circulating levels of soluble tumor necrosis factor receptor-1 (sTNF-R1) and sTNF-R2 are altered in numerous diseases, including several types of cancer. Correlations with the risk of progression in some cancers, as well as systemic manifestations of the disease and therapeutic side-effects, have been described. However, there is very little information on the levels of these soluble receptors in glioblastoma (GBM). Here, we report on an exploratory retrospective study of the levels of sTNF-Rs in the vascular circulation of patients with GBM. Banked samples were obtained from 112 GBM patients (66 untreated, newly-diagnosed patients and 46 with recurrent disease) from two institutions. The levels of sTNF-R1 in the plasma were significantly lower in patients with newly-diagnosed or recurrent GBM than apparently healthy individuals and correlated with the intensity of expression of TNF-R1 on the tumor-associated endothelial cells (ECs) in the corresponding biopsies. Elevated levels of sTNF-R1 in patients with recurrent, but not newly-diagnosed GBM, were significantly associated with a shorter survival, independent of age (p = 0.02) or steroid medication. In contrast, the levels of circulating sTNF-R2 were significantly higher in recurrent GBM than healthy individuals and there was no significant correlation with expression of TNF-R2 on the tumor-associated ECs or survival time. The results indicate that larger, prospective studies are warranted to determine the predictive value of the levels of sTNF-R1 in patients with recurrent GBM and the factors that regulate the levels of sTNF-Rs in the circulation in GBM patients.


Asunto(s)
Glioblastoma/sangre , Recurrencia Local de Neoplasia/sangre , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
3.
Ann Neurol ; 72(5): 766-78, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23280793

RESUMEN

OBJECTIVE: Glioblastomas (GBMs) are lethal cancers that display cellular hierarchies parallel to normal brain. At the apex are GBM stem cells (GSCs), which are relatively resistant to conventional therapy. Interactions with the adjacent perivascular niche are an important driver of malignancy and self-renewal in GSCs. Extracellular matrix (ECM) cues instruct neural stem/progenitor cell-niche interactions, and the objective of our study was to elucidate its composition and contribution to GSC maintenance in the perivascular niche. METHODS: We interrogated human tumor tissue for immunofluorescence analysis and derived GSCs from tumor tissues for functional studies. Bioinformatics analyses were conducted by mining publicly available databases. RESULTS: We find that laminin ECM proteins are localized to the perivascular GBM niche and inform negative patient prognosis. To identify the source of laminins, we characterized cellular elements within the niche and found that laminin α chains were expressed by nonstem tumor cells and tumor-associated endothelial cells (ECs). RNA interference targeting laminin α2 inhibited GSC growth and self-renewal. In co-culture studies of GSCs and ECs, laminin α2 knockdown in ECs resulted in decreased tumor growth. INTERPRETATION: Our studies highlight the contribution of nonstem tumor cell-derived laminin juxtracrine signaling. As laminin α2 has recently been identified as a molecular marker of aggressive ependymoma, we propose that the brain vascular ECM promotes tumor malignancy through maintenance of the GSC compartment, providing not only a molecular fingerprint but also a possible therapeutic target.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Laminina/metabolismo , Células Madre Neoplásicas/fisiología , Antígeno AC133 , Análisis de Varianza , Antígenos CD/metabolismo , Neoplasias Encefálicas/mortalidad , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Biología Computacional , Relación Dosis-Respuesta en la Radiación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/efectos de la radiación , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioblastoma/mortalidad , Glicoproteínas/metabolismo , Humanos , Estimación de Kaplan-Meier , Laminina/genética , Imagen por Resonancia Magnética , Masculino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/efectos de la radiación , Péptidos/metabolismo , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , Radiación , Análisis de Regresión , Factores de Tiempo , Análisis de Matrices Tisulares , Células Tumorales Cultivadas , Microambiente Tumoral/fisiología
4.
Gastroenterology ; 140(5): 1653-63, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21320502

RESUMEN

BACKGROUND & AIMS: Fibrosis is an abnormal extension of the wound healing process that follows tissue damage; it is involved in pathogenesis in a variety of chronic diseases. The formation of extracellular matrix is an essential response in wound healing. Although it has been proposed that collagen organization and assembly depend on the fibronectin matrix in culture, the contribution of fibronectin to these processes remains to be defined in vivo. METHODS: We generated a conditional, fibronectin-deficient mouse model of liver injury and explored whether fibronectin would be a suitable target for preventing extensive collagen deposits and scar formation that could lead to liver fibrosis. RESULTS: The lack of fibronectin did not interfere with reconstruction of collagen fibril organization in response to liver injury. Signaling by transforming growth factor-ß and type V collagen were required for collagen fibrillogenesis during remodeling of adult liver tissue. CONCLUSIONS: Transforming growth factor-ß and type V collagen are targets for regulating the initial fibrogenic response to liver damage.


Asunto(s)
Matriz Extracelular/patología , Fibroblastos/patología , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Cirrosis Hepática Experimental/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Bilis/química , Colesterol/biosíntesis , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Cirrosis Hepática Experimental/patología , Ratones , Ratones Transgénicos , ARN Mensajero/genética , Proteínas de Transporte Vesicular/biosíntesis
5.
Nat Commun ; 13(1): 4268, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879332

RESUMEN

Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3ß1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3ß1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3ß1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3ß1 may be a therapeutic target on the glioblastoma vasculature.


Asunto(s)
Glioblastoma , Integrina alfa3beta1 , Calcio , Movimiento Celular , Células Endoteliales/patología , Exocitosis , Glioblastoma/genética , Glioblastoma/patología , Humanos , Lisosomas/patología , Neovascularización Patológica/patología
6.
Cancer Res ; 72(6): 1428-37, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396498

RESUMEN

Activation of TNF receptor 1 (TNF-R1) can generate signals that promote either apoptosis or survival. In this study, we show that these signals can be determined by the character of the extracellular matrix in the tumor microenvironment. Specifically, through studies of glioblastoma, we showed that TNFα stimulation induced apoptosis of primary brain endothelial cells (EC) attached to collagen or fibronectin (which engage integrins α2ß1/α3ß1 and α5ß1, respectively), but did not induce apoptosis of ECs attached to laminin (which engages integrins α6ß1 and α3ß1). TNF-R1 expression was significantly higher in ECs in glioblastoma (GBM) tumors compared with ECs in normal brain specimens. TNFα was also expressed in GBM tumor-associated ECs, which was associated with longer patient survival. ECs plated on anti-integrin α2 or α3 antibody were susceptible to TNFα-induced apoptosis, whereas those plated on anti-integrin α6 antibody were not. Moreover, the ECs plated on laminin, but not collagen, expressed cellular FLICE inhibitory protein (cFLIP) and TNFα stimulation of laminin-attached cells in which cFLIP had been downregulated resulted in the induction of apoptosis. In contrast, attachment to laminin did not induce cFLIP expression in GBM tumor stem cells. Together, our findings indicate that the laminin receptor integrin α6ß1 promotes the survival of brain ECs by inhibiting prodeath signaling by TNF-R1, in part by inducing cFLIP expression.


Asunto(s)
Apoptosis , Neoplasias Encefálicas/metabolismo , Endotelio Vascular/metabolismo , Glioblastoma/metabolismo , Integrina alfa6beta1/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Encéfalo/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Colágeno/metabolismo , Regulación hacia Abajo , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo
7.
PLoS One ; 4(1): e4113, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19119318

RESUMEN

BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.


Asunto(s)
Adhesión Celular/fisiología , Fibronectinas/química , Fibronectinas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Células Cultivadas , Fibronectinas/genética , Adhesiones Focales/metabolismo , Humanos , Ratones , Ratones Noqueados , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Vinculina/metabolismo
8.
J Biol Chem ; 279(34): 35749-59, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15199047

RESUMEN

The role of endogenously synthesized fibronectin (FN) in assembly was studied with cells lacking or expressing FN. Cells were cultured as homogeneous or mixed populations on surfaces coated with different matrix proteins. Compared with FN-expressing cells, FN-null cells poorly assembled exogenous plasma FN (pFN) when adhered to vitronectin or the recombinant cell-binding domain (III(7-10)) of FN. Vitronectin had a suppressive effect that was overcome by co-adsorbed pFN or laminin-1 but not by soluble FN. In co-cultures of FN-expressing cells and FN-null cells, endogenous FN was preferentially assembled around FN-expressing cells regardless of the adhesive ligand. If the adhesive ligand was vitronectin, exogenous pFN assembled preferentially around cells expressing cellular FN or recombinant EDa- or EDa+ FN. In co-cultures on vitronectin of FN-null cells and beta(1) integrin subunit-null cells, fibrils of cellular FN and pFN were preferentially deposited by FN-null (beta(1)-expressing) cells immediately adjacent to (FN-secreting) beta(1)-null cells. In co-cultures on vitronectin of FN-null cells and beta(1)-null cells expressing a chimera with the extracellular domain of beta(1) and the cytoplasmic domain of beta(3), preferential assembly was by the chimera-expressing cells. These results indicate that the adhesive ligand is a determinant of FN assembly by cells not secreting endogenous FN (suppressive if vitronectin, non-suppressive but non-supportive if III(7-10), supportive if pFN or laminin-1) and suggest that efficient interaction of freshly secreted cellular FN with a beta(1) integrin, presumably alpha(5)beta(1), substitutes for integrin-mediated adherence to a preformed matrix of laminin-1 or pFN to support assembly of FN.


Asunto(s)
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Técnicas de Cocultivo , Matriz Extracelular/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/ultraestructura , Eliminación de Gen , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina , Ratones , Células Madre/citología , Células Madre/metabolismo , Vitronectina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA