RESUMEN
The optimal treatment strategy for newly diagnosed primary central nervous system lymphoma (PCNSL) has yet to be established, especially in the elderly. In the current study, we conducted a phase II study to evaluate the efficacy and safety of rituximab plus high-dose MTX followed by rituximab plus cytarabine in patients aged ≥60 years newly diagnosed with PCNSL. Patients received an induction treatment of high-dose methotrexate plus rituximab followed by two cycles of a consolidation treatment of cytarabine plus rituximab. The primary end-point was a 2-year progression-free survival (PFS) rate. A total of 35 patients were recruited, and their median age was 73 (range: 60-81). After induction treatment, the complete and partial responses (PRs) were 56% and 20% respectively. Twenty-six patients proceeded to the consolidation treatment; the complete and PRs were 59% and 9% respectively. After a median follow-up duration of 36.0 months, the 2-year PFS rate was 58.7%. Treatment was generally well-tolerated as only three patients were withdrawn from the study due to toxicity, and no treatment-related mortality was reported. The 2-year overall survival rate was 77.9%. The current study may suggest the feasibility of administering high-dose MTX plus cytarabine in PCNSL patients aged ≥60 years and the potential role of additive rituximab.
RESUMEN
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Asunto(s)
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Desarrollo de la Planta , Micronutrientes/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Oryza/genética , Oryza/metabolismoRESUMEN
Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.
Asunto(s)
Proteínas Co-Represoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Activación Transcripcional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Complejos Multiproteicos , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
The calmodulin-binding transcription activators (CAMTAs) mediate transcriptional regulation of development, growth, and responses to various environmental stresses in plants. To understand the biological roles of soybean CAMTA (GmCAMTA) family members in response to abiotic stresses, we characterized expression patterns of 15 GmCAMTA genes in response to various abiotic stresses. The GmCAMTA genes exhibited distinct circadian regulation expression patterns and were differently expressed in response to salt, drought, and cold stresses. Interestingly, the expression levels of GmCAMTA2, GmCAMTA8, and GmCAMTA12 were higher in stem tissue than in other soybean tissues. To determine the roles of GmCAMTAs in the regulation of developmental processes and stress responses, we isolated GmCAMTA2 and GmCAMTA8 cDNAs from soybean and generated Arabidopsis overexpressing transgenic plants. The GmCAMTA2-OX and GmCAMTA8-OX plants showed hypersensitivity to drought stress. The water in the leaves of GmCAMTA2-OX and GmCAMTA8-OX plants was lost faster than that in wild-type (WT) plants under drought-stress conditions. In addition, stress-responsive genes were down-regulated in the GmCAMTA2-OX and GmCAMTA8-OX plants under drought stress conditions compared to WT plants. Our results suggest that GmCAMTA2 and GmCAMTA8 genes are regulated by circadian rhythms and function as negative regulators in development and drought stress responses.
Asunto(s)
Arabidopsis , Glycine max , Glycine max/metabolismo , Calmodulina/metabolismo , Sequías , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Arabidopsis/metabolismo , Respuesta al Choque por Frío/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
In plants, seasonal inputs such as photoperiod and temperature modulate the plant's internal genetic program to regulate the timing of the developmental transition from vegetative to reproductive growth. This regulation of the floral transition involves chromatin remodeling, including covalent modification of histones. Here, we report that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), a WD40 repeat protein, associates with a histone deacetylase complex to repress transcription of the GIGANTEA (GI)-mediated photoperiodic flowering pathway in Arabidopsis (Arabidopsis thaliana). Loss of function of HOS15 confers early flowering under long-day conditions because elevated GI expression. LUX ARRHYTHMO (LUX), a DNA binding transcription factor and component of the Evening Complex (EC), is important for the binding of HOS15 to the GI promoter. In wild type, HOS15 associates with the EC components LUX, EARLY FLOWERING 3 (ELF3), and ELF4 and the histone deacetylase HDA9 at the GI promoter, resulting in histone deacetylation and reduced GI expression. In the hos15-2 mutant, the levels of histone acetylation are elevated at the GI promoter, resulting in increased GI expression. Our data suggest that the HOS15-EC-HDA9 histone-modifying complex regulates photoperiodic flowering via the transcriptional repression of GI.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Histona Desacetilasas/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Cold stress is a major environmental stress that severely affects plant growth and crop productivity. Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15) is a substrate receptor of the CULLIN4-based CLR4 ubiquitin E3 ligase complex, which epigenetically regulates cold tolerance by degrading HISTONE DEACETYLASE2C (HD2C) to switch from repressive to permissive chromatin structure in response to cold stress. In this study, we characterized a HOS15-binding protein, POWERDRESS (PWR), and analyzed its function in the cold stress response. PWR loss-of-function plants (pwr) showed lower expression of cold-regulated (COR) genes and sensitivity to freezing. PWR interacts with HD2C through HOS15, and cold-induced HD2C degradation by HOS15 is diminished in the pwr mutant. The association of HOS15 and HD2C to promoters of cold-responsive COR genes was dependent on PWR. Consistent with these observations, the high acetylation levels of histone H3 by cold-induced and HOS15-mediated HD2C degradation were significantly reduced in pwr under cold stress. PWR also interacts with C-repeat element-binding factor transcription factors to modulate their cold-induced binding to the promoter of COR genes. Collectively, our data signify that the PWR-HOS15-HD2C histone-modifying complex regulates the expression of COR genes and the freezing tolerance of plants.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , MutaciónRESUMEN
Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.
Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Dioxigenasas/genética , Dioxigenasas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión ProteicaRESUMEN
Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis , Microtúbulos/fisiología , Oryza , Tolerancia a la Sal , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Plantas Modificadas Genéticamente/fisiologíaRESUMEN
Global warming has an impact on crop growth and development. Flowering time is particularly sensitive to environmental factors such as day length and temperature. In this study, we investigated the effects of global warming on flowering using an open-top Climatron chamber, which has a higher temperature and CO2 concentration than in the field. Two different soybean cultivars, Williams 82 and IT153414, which exhibited different flowering times, were promoted flowering in the open-top Climatron chamber than in the field. We more specifically examined the expression patterns of soybean flowering genes on the molecular level under high-temperature conditions. The elevated temperature induced the expression of soybean floral activators, GmFT2a and GmFT5a as well as a set of GmCOL genes. In contrast, it suppressed floral repressors, E1 and E2 homologs. Moreover, high-temperature conditions affected the expression of these flowering genes in a day length-independent manner. Taken together, our data suggest that soybean plants properly respond and adapt to changing environments by modulating the expression of a set of flowering genes in the photoperiod pathway for the successful production of seeds and offspring.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Glycine max/crecimiento & desarrollo , Proteínas de Plantas/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Calentamiento Global , Calor , Fotoperiodo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glycine max/genética , Estrés FisiológicoRESUMEN
Sessile plants reprogram their metabolic and developmental processes during adaptation to prolonged environmental stresses. To understand the molecular mechanisms underlying adaptation of plant cells to saline stress, we established callus suspension cell cultures from Arabidopsis roots adapted to high salt for an extended period of time. Adapted cells exhibit enhanced salt tolerance compared with control cells. Moreover, acquired salt tolerance is maintained even after the stress is relieved, indicating the existence of a memory of acquired salt tolerance during mitotic cell divisions, known as mitotic stress memory. Metabolite profiling using 1H-nuclear magnetic resonance (NMR) spectroscopy revealed metabolic discrimination between control, salt-adapted and stress-memory cells. Compared with control cells, salt-adapted cells accumulated higher levels of sugars, amino acids and intermediary metabolites in the shikimate pathway, such as coniferin. Moreover, adapted cells acquired thicker cell walls with higher lignin contents, suggesting the importance of adjustments of physical properties during adaptation to elevated saline conditions. When stress-memory cells were reverted to normal growth conditions, the levels of metabolites again readjusted. Whereas most of the metabolic changes reverted to levels intermediate between salt-adapted and control cells, the amounts of sugars, alanine, γ-aminobutyric acid and acetate further increased in stress-memory cells, supporting a view of their roles in mitotic stress memory. Our results provide insights into the metabolic adjustment of plant root cells during adaptation to saline conditions as well as pointing to the function of mitotic memory in acquired salt tolerance.
Asunto(s)
Arabidopsis/metabolismo , Metabolómica/métodos , Arabidopsis/genética , Mitosis/genética , Mitosis/fisiología , Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiologíaRESUMEN
A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.
Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Tolerancia a la Sal/fisiología , Simportadores/genética , Animales , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Femenino , Modelos Moleculares , Oocitos , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Simportadores/química , Simportadores/metabolismo , Xenopus laevisRESUMEN
Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Sulfotransferasas/metabolismo , Xenobióticos/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Cicloheximida/farmacología , Inactivación Metabólica/efectos de los fármacos , Cinética , Fenoles/química , Fenoles/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Ácidos Sulfónicos/metabolismoRESUMEN
Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfatos/metabolismo , Compuestos de Potasio/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Fosfatos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Compuestos de Potasio/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Transactivadores/genéticaRESUMEN
Plants use the regulation of their circadian clock to adapt to daily environmental challenges, particularly water scarcity. During drought, plants accelerate flowering through a process called drought escape (DE) response, which is promoted by the circadian clock component GIGANTEA (GI). GI up-regulates the flowering inducer gene FLOWERING LOCUS T (FT). Phytohormone Abscisic acid (ABA) is also required for drought escape, and both GIGANTEA and Abscisic acid are interdependent in the transition. Recent research has revealed a new mechanism by which GIGANTEA and the protein ENHANCED EM LEVEL form a heterodimer complex that turns on ABA biosynthesis during drought stress by regulating the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). This highlights the close connection between the circadian clock and ABA regulation and reveals a new adaptive strategy for plants to cope with drought and initiates the DE response.
Asunto(s)
Arabidopsis , Relojes Circadianos , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Resistencia a la Sequía , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , SequíasRESUMEN
Potato (Solanum tuberosum) is relatively vulnerable to abiotic stress conditions such as drought, but the tolerance mechanisms for such stresses in potato are largely unknown. To identify stress-related factors in potato, we previously carried out a genetic screen of potato plants exposed to abiotic environmental stress conditions using reverse northern-blot analysis. A cDNA encoding a putative R1-type MYB-like transcription factor (StMYB1R-1) was identified as a putative stress-response gene. Here, the transcript levels of StMYB1R-1 were enhanced in response to several environmental stresses in addition to drought but were unaffected by biotic stresses. The results of intracellular targeting and quadruple 9-mer protein-binding microarray analysis indicated that StMYB1R-1 localizes to the nucleus and binds to the DNA sequence (G)/(A)GATAA. Overexpression of a StMYB1R-1 transgene in potato plants improved plant tolerance to drought stress while having no significant effects on other agricultural traits. Transgenic plants exhibited reduced rates of water loss and more rapid stomatal closing than wild-type plants under drought stress conditions. In addition, overexpression of StMYB1R-1 enhanced the expression of drought-regulated genes such as AtHB-7, RD28, ALDH22a1, and ERD1-like. Thus, the expression of StMYB1R-1 in potato enhanced drought tolerance via regulation of water loss. These results indicated that StMYB1R-1 functions as a transcription factor involved in the activation of drought-related genes.
Asunto(s)
Adaptación Fisiológica , Sequías , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiología , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Secuencia de Bases , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN de Plantas/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
Through sos3 (salt overly sensitive 3) suppressor screening, two allelic suppressor mutants that are weak alleles of the strong sos3 suppressor sos3hkt1-1 were recovered. Molecular characterization identified T-DNA insertions in the distal promoter region of the Arabidopsis thaliana HKT1 (AtHKT1, At4g10310) in these two weak sos3 suppressors, which results in physical separation of a tandem repeat from the proximal region of the AtHKT1 promoter. The tandem repeat is approximately 3.9 kb upstream of the ATG start codon and functions as an enhancer element to promote reporter gene expression. A putative small RNA target region about 2.6 kb upstream of the ATG start codon is heavily methylated. CHG and CHH methylation but not CG methylation is significantly reduced in the small RNA biogenesis mutant rdr2, indicating that non-CG methylation in this region is mediated by small RNAs. Analysis of AtHKT1 expression in rdr2 suggests that non-CG methylation in the putative small RNA target region represses AtHKT1 expression in shoots. The DNA methylation-deficient mutant met1-3 has nearly complete loss of total cytosine methylation in the putative small RNA target region and is hypersensitive to salt stress. The putative small RNA target region and the tandem repeat are essential for maintaining AtHKT1 expression patterns crucial for salt tolerance.
Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Cloruro de Sodio , Simportadores/genética , Arabidopsis/genética , Secuencia de Bases , Datos de Secuencia Molecular , Reacción en Cadena de la PolimerasaRESUMEN
The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Oxigenasas de Función Mixta/genética , Mutagénesis Insercional , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismoRESUMEN
Cold stress is a major environmental constraint that restrains plant growth and productivity. To cope with cold stress, plants must be able to perceive a cold signal and regulate the expression of cold-regulated (COR) genes. In our recent study, we showed that Arabidopsis HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor for CULLIN4-based ubiquitin E3 ligase complex to promote cold-induced histone deacetylase 2 C (HD2C) degradation that allows the activation of COR genes. Additionally, we found that POWERDRESS (PWR), a HOS15-interacting protein, is required for the association of HOS15 with COR gene chromatin and HD2C degradation. The HOS15/PWR complex interacts with and recruits CBF transcription factors to the promoters of COR genes. Collectively, our previous findings suggest that HOS15 and PWR function as positive regulators for the expression of COR genes, and promote cold tolerance. Accordingly, we herein discuss the role of PWR in cold tolerance.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Respuesta al Choque por Frío , Factores de Transcripción/metabolismo , Arabidopsis/genética , Congelación , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Modelos Biológicos , Fenotipo , ProteolisisRESUMEN
Plants possess adaptive reprogramed modules to prolonged environmental stresses, including adjustment of metabolism and gene expression for physiological and morphological adaptation. CCoAOMT1 encodes a caffeoyl CoA O-methyltransferase and is known to play an important role in adaptation of Arabidopsis plants to prolonged saline stress. In this study, we showed that the CCoAOMT1 gene plays a role in drought stress response. Transcript of CCoAOMT1 was induced by salt, dehydration (drought), and methyl viologen (MV), and loss of function mutants of CCoAOMT1, ccoaomt1-1, and ccoaomt1-2 exhibit hypersensitive phenotypes to drought and MV stresses. The ccoaomt1 mutants accumulated higher level of H2O2 in the leaves and expressed lower levels of drought-responsive genes including RD29B, RD20, RD29A, and ERD1, as well as ABA3 3 and NCED3 encoding ABA biosynthesis enzymes during drought stress compared to wild-type plants. A seed germination assay of ccoaomt1 mutants in the presence of ABA also revealed that CCoAOMT1 functions in ABA response. Our data suggests that CCoAOMT1 plays a positive role in response to drought stress response by regulating H2O2 accumulation and ABA signaling.
RESUMEN
The proper timing of flowering in response to environmental changes is critical for ensuring crop yields. FLOWERING LOCUS T (FT) homologs of the phosphatidylethanolamine-binding protein family play important roles as floral integrators in many crops. In soybean, we identified 17 genes of this family, and characterized biological functions in flowering for ten FT homologs. Overexpression of GmFT homologs in Arabidopsis revealed that a set of GmFT homologs, including GmFT2a/2b, GmFT3a/3b, and GmFT5a/5b, promoted flowering similar to FT; in contrast, GmFT1a/1b, GmFT4, and GmFT6 delayed flowering. Consistently, expressions of GmFT2a, GmFT2b, and GmFT5a were induced in soybean leaves in response to floral inductive short days, whereas expressions of GmFT1a and GmFT4 were induced in response to long days. Exon swapping analysis between floral activator GmFT2a and floral repressor GmFT4 revealed that the segment B region in the fourth exon is critical for their antagonistic functions. Finally, expression analysis of GmFT2a, GmFT5a, and GmFT4 in soybean accessions exhibiting various flowering times indicated that the mRNA levels of GmFT2a and GmFT5a were higher in early flowering accessions than in late-flowering accessions, while GmFT4 showed the opposite pattern. Moreover, the relative mRNA levels between GmFT2a/GmFT5a and GmFT4 was important in determining day length-dependent flowering in soybean accessions. Taken together, our results suggest that the functions of GmFT homologs have diversified into floral activators and floral repressors during soybean evolution, and the timing of flowering in response to changing day length is determined by modulating the activities of antagonistic GmFT homologs.