Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(8): 086704, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898116

RESUMEN

We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1/2 Heisenberg layers of the molecular-based bulk material [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2}. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J^{'}/k_{B}≈1 mK. Because of the moderate intralayer exchange coupling of J/k_{B}=6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J^{'} only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2} is determined by the field-tuned XY anisotropy and the concomitant BKT physics.

2.
Phys Rev Lett ; 125(26): 267202, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449718

RESUMEN

We report gapless quantum spin liquid behavior in the layered triangular Sr_{3}CuSb_{2}O_{9} system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well separated by Sb planes. Muon spin relaxation measurements show that the S=1/2 moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature θ_{CW}≃-143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat (C_{m}) below 5 K reveals a C_{m}=γT+αT^{2} behavior. The significant T^{2} contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-T specific heat data, we estimate the dominant exchange scale to be ∼36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations (∼45 K) as well as high-temperature susceptibility analysis (∼70 K). The linear specific heat coefficient is about 18 mJ/mol K^{2} which is somewhat larger than for typical Fermi liquids.

3.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975979

RESUMEN

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

4.
Phys Rev Lett ; 122(7): 077202, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848651

RESUMEN

Yb(Rh_{1-x}Co_{x})_{2}Si_{2} is a model system to address two challenging problems in the field of strongly correlated electron systems. The first is the intriguing competition between ferromagnetic (FM) and antiferromagnetic (AFM) order when approaching a magnetic quantum critical point (QCP). The second is the occurrence of magnetic order along a very hard crystalline electric field (CEF) direction, i.e., along the one with the smallest available magnetic moment. Here, we present a detailed study of the evolution of the magnetic order in this system from a FM state with moments along the very hard c direction at x=0.27 towards the yet unknown magnetic state at x=0. We first observe a transition towards an AFM canted state with decreasing x and then to a pure AFM state. This confirms that the QCP in YbRh_{2}Si_{2} is AFM, but the phase diagram is very similar to those observed in some inherently FM systems like NbFe_{2} and CeRuPO, which suggests that the basic underlying instability might be FM. Despite the huge CEF anisotropy the ordered moment retains a component along the c axis also in the AFM state. The huge CEF anisotropy in Yb(Rh_{1-x}Co_{x})_{2}Si_{2} excludes that this hard-axis ordering originates from a competing exchange anisotropy as often proposed for other heavy-fermion systems. Instead, it points to an order-by-disorder based mechanism.

5.
Phys Rev Lett ; 118(23): 236403, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644641

RESUMEN

The ^{181}Ta quadrupole resonance [nuclear quadrupole resonance (NQR)] technique is utilized to investigate the microscopic magnetic properties of the Weyl semimetal TaP. We find three zero-field NQR signals associated with the transition between the quadrupole split levels for Ta with I=7/2 nuclear spin. A quadrupole coupling constant, ν_{Q}=19.250 MHz, and an asymmetric parameter of the electric field gradient, η=0.423, are extracted, in good agreement with band structure calculations. In order to examine the magnetic excitations, the temperature dependence of the spin-lattice relaxation rate (1/T_{1}T) is measured for the f_{2} line (±5/2↔±3/2 transition). We find that there exist two regimes with quite different relaxation processes. Above T^{*}≈30 K, a pronounced (1/T_{1}T)∝T^{2} behavior is found, which is attributed to the magnetic excitations at the Weyl nodes with temperature-dependent orbital hyperfine coupling. Below T^{*}, the relaxation is mainly governed by a Korringa process with 1/T_{1}T=const, accompanied by an additional T^{-1/2}-type dependence to fit our experimental data. We show that Ta NQR is a novel probe for the bulk Weyl fermions and their excitations.

6.
Phys Rev Lett ; 116(10): 107203, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015508

RESUMEN

PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

7.
Phys Rev Lett ; 113(21): 216403, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479509

RESUMEN

We present magnetization, specific heat, and (27)Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard-x-ray photoemission spectroscopy study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb(3+) carries a full and stable moment, and Fe carries a moment of about 3.1 µB. The enhanced value of the Sommerfeld-Wilson ratio and the dynamic scaling of the spin-lattice relaxation rate divided by T[(27)(1/T1T)] with static susceptibility suggests admixed ferromagnetic correlations. (27)(1/T1T) simultaneously tracks the valence fluctuations from the 4f Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3d moments at low temperature; the latter evolve out of an Yb 4f admixed conduction band.

8.
Phys Rev Lett ; 110(7): 077207, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166404

RESUMEN

We report on detailed polarized small-angle neutron scattering on cubic FeGe in magnetic fields applied either along (transverse) the scattering vector or parallel (longitudinal) to the neutron beam. The (H, T) phase diagrams for all principal axes contain a segmented A-phase region just below the onset of magnetic order. Hexagonal Bragg-spot patterns were observed across the entire A-phase region for the longitudinal geometry. Scattering intensity was observed in parts of the A phase for both scattering configurations. Only in a distinct pocket (A(1)) was vanishing scattering intensity found in the transverse geometry.

9.
J Phys Condens Matter ; 35(42)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459864

RESUMEN

The local magnetic properties of Yb3+in the layered honeycomb material YbCl3were investigated by electron spin resonance on single crystals. For in-plane and out-of-plane field orientations theg-factor shows a clear anisotropy (g∥=2.97(8)andg⊥=1.53(4)), whereas the low temperature exchange coupling and the spin relaxation display a rather isotropic character. At elevated temperatures the contribution of the first excited crystal field level (21±2meV) dominates the spin relaxation.

10.
Phys Rev Lett ; 107(12): 127203, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-22026794

RESUMEN

We report on detailed magnetic measurements on the cubic helimagnet FeGe in external magnetic fields and temperatures near the onset of long-range magnetic order at T(C)=278.2(3) K. Precursor phenomena display a complex succession of temperature-driven crossovers and phase transitions in the vicinity of T(C). The A-phase region, present below T(C) and fields H<0.5 kOe, is split in several pockets. The complexity of the magnetic phase diagram is theoretically explained by the confinement of solitonic kinklike or Skyrmionic units that develop an attractive and oscillatory intersoliton coupling owing to the longitudinal inhomogeneity of the magnetization.

11.
J Phys Condens Matter ; 32(22): 225802, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31997776

RESUMEN

Here, we report the synthesis and magnetic properties of a novel, centrosymmetric, quasi-1D spin chain system La3VWS3O6, with hexagonal crystal structure (P63/m, a = 9.460 76(3), c = 5.518 09(2) Å). Pure powders were obtained by solid-state reactions from La2O3, WO3 and metal powders of V and W. X-ray powder diffraction, specific heat, magnetization, 139La-nuclear magnetic resonance (NMR), and electric resistivity measurements indicate that the compound is a low dimensional magnet with an S = 1 spin chain that exhibits no sign of magnetic ordering above 2 K. A single ion anisotropy (D/k B ~ 10 K), caused by magneto-crystalline effects, is probably responsible for a thermodynamic entropy release at lower temperatures, which concurs with 139La-NMR data. By detailed comparison with non-centrosymmetric Ba3V2S4O3, having a very similar magnetic lattice, it is obvious that the presence of crystallographic inversion symmetry has an effect on the behaviour of the magnetic chains.

12.
Inorg Chem ; 47(20): 9489-96, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18811146

RESUMEN

A new phase, Sn(x)Pt4Sb(12-y)Sn(y), has been prepared from the elements. It exhibits a wide range of homogeneity with 0.3(2) < or = x < or = 1.0(2) and 4.2(2) < or = y < or = 7.0(2). The crystal structure and the composition were established by single-crystal and powder X-ray diffraction as well as wavelength-dispersive X-ray analysis measurements and were supported by nuclear magnetic resonance experiments. The compound is the first representative of the filled-skutterudite family with the filler atoms not located at the center of the cavity but covalently bonded to the cavity's wall, as confirmed by the analysis of chemical bonding with the electron localizability indicator. The Sn and Sb atoms share the framework site with different coordinate parameters caused by the difference in atomic size; additional tin atoms are located in the cavities of the framework. The material is a diamagnet in the whole composition range. In agreement with the calculated electronic density of states, the material reveals a metallic behavior in electronic transport. The absolute values of electrical resistivity vary with the tin-to-antimony ratio.

13.
Sci Rep ; 8(1): 10851, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022078

RESUMEN

Temperature- and field-dependent 1H-, 19F-, and 79,81Br-NMR measurements together with zero - field 79,81Br-NQR measurements on polycrystalline samples of barlowite, Cu4(OH)6FBr are conducted to study the magnetism and possible structural distortions on a microscopic level. The temperature dependence of the 79,81Br-NMR spin-lattice relaxation rates 1/T1 indicate a phase transition at TN [Formula: see text] 15 K which is of magnetic origin, but with an unusually weak slowing down of fluctuations below TN. Moreover, 1/T1T scales linear with the bulk susceptibility which indicates persisting spin fluctuations down to 2 K. Quadupolare resonance (NQR) studies reveal a pair of zero-field NQR- lines associated with the two isotopes of Br with the nuclear spins of I = 3/2. Quadrupole coupling constants of vQ ≃ 28.5 MHz and 24.7 MHz for 79Br- and 81Br-nuclei are determined from Br-NMR and the asymmetry parameter of the electric field gradient was estimated to η ≃ 0.2. The Br-NQR lines are consistent with our findings from Br-NMR and they are relatively broad, even above TN. This broadening and the relative large η value suggests a symmetry reduction at the Br- site reflecting the presence of a local distortion in the lattice. Our density-functional calculations show that the displacements of Cu2 atoms located between the kagome planes do not account for this relatively large η. On the other hand, full structural relaxation, including the deformation of kagome planes, leads to a better agreement with the experiment.

14.
J Phys Condens Matter ; 29(31): 315801, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598335

RESUMEN

Polycrystalline [Formula: see text] [Formula: see text] [Formula: see text] samples were synthesized by arc-melting and subsequent annealing at 970 K. Specific heat, electrical resistivity and magnetic susceptibility measurements are performed over a wide range in temperature and provide hints for the presence of a complex magnetic ordering below 3 K arising from three crystallographically independent Ce sites. This behaviour is driven by a complex interplay between ferro-, ferri-, and antiferromagnetic correlations among the Ce atoms.

15.
J Phys Condens Matter ; 29(32): 325701, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28628029

RESUMEN

The Weyl semimetal NbP exhibits an extremely large magnetoresistance and an ultra-high mobility. The large magnetoresistance originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of [Formula: see text] at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.

16.
J Phys Condens Matter ; 28(34): 345701, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27355521

RESUMEN

Magnetization, resistivity and (11)B, (59)Co NMR measurements have been performed on the Pauli paramagnet [Formula: see text], and the superconductors [Formula: see text] ([Formula: see text] K) and [Formula: see text] ([Formula: see text] K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting [Formula: see text] and [Formula: see text] with respect to the non superconducting reference compound [Formula: see text]. The occurrence of superconductivity is related to the DOS enhancement.

17.
J Phys Condens Matter ; 27(15): 155701, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25812718

RESUMEN

We present a detailed study of the superconducting properties of the weakly pinned, quasi-two-dimensional superconductor 2H-NbSe2, and its intercalated variant NbSe2{CoCp2}0.26. The intercalation of 2H-NbSe2 with the organometallic donor molecule cobaltocene (CoCp2) hardly affects the superconducting properties within the layers. However, the properties perpendicular to the layers change significantly due to the large expansion of the layer spacings of the host lattice in the c-direction by a factor of about two. In particular, the superconducting anisotropy factor Γ increases from 3.3 in the parent compound 2H-NbSe2 up to 4.4 in the intercalated species. Therefore, NbSe2{CoCp2}0.26 is an excellent candidate to analyze how the anisotropy effects the superconducting mechanism in layered dichalcogenides, and to evaluate the various models proposed in the literature to account for the anisotropy in 2H-NbSe2. While a two-gap model and an anisotropic single-gap model are competing concepts to describe the almost linear T(2)-dependence of ΔC/T in low-dimensional dichalcogenides, our comparative study suggests that a single-gap model with an anisotropic Fermi-surface is sufficient to capture the ΔC/T(T) behavior in our samples qualitatively.

18.
J Phys Condens Matter ; 24(13): 135602, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22407024

RESUMEN

A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and µSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.


Asunto(s)
Arsénico/metabolismo , Cerio/metabolismo , Compuestos Férricos/metabolismo , Espectroscopía de Resonancia Magnética , Magnetismo , Oxígeno/metabolismo , Fosfatos/metabolismo , Modelos Moleculares
19.
J Phys Condens Matter ; 24(4): 045702, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22214818

RESUMEN

We report bulk superconductivity (SC) in Eu(0.2)Sr(0.8)(Fe(0.86)Co(0.14))(2)As(2) single crystals by means of electrical resistivity, magnetic susceptibility and specific heat measurements with T(c) is approximately equal to 20 K and an antiferromagnetic (AFM) ordering of Eu(2+) moments at T(N) is approximately equal to 2.0 K in zero field. (75)As NMR experiments have been performed in the two external field directions (H is parallel to ab) and (H is parallel to c). (75)As-NMR spectra are analysed in terms of first-order quadrupolar interaction. Spin-lattice relaxation rates (1/T(1)) follow a T(3) law in the temperature range 4.2-15 K. There is no signature of a Hebel-Slichter coherence peak just below the SC transition, indicating a non-s-wave or s(±) type of superconductivity. In the temperature range 160-18 K 1/T(1)T follows the C/(T+θ) law reflecting 2D AFM spin fluctuations.

20.
J Phys Condens Matter ; 24(29): 294204, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22773363

RESUMEN

We report on magnetic susceptibility and specific heat measurements of the cubic helimagnet FeGe in external magnetic fields and temperatures near the onset of long-range magnetic order at TC = 278.2(3) K. Pronounced anomalies in the field-dependent χac(H) data as well as in the corresponding imaginary part χ''ac(H) reveal a precursor region around TC in the magnetic phase diagram. The occurrence of a maximum at T0 = 279.6 K in the zero-field specific heat data indicates a second-order transition into a magnetically ordered state. A shoulder evolves above this maximum as a magnetic field is applied. The field dependence of both features coincides with crossover lines from the field-polarized to the paramagnetic state deduced from χac(T) at constant magnetic fields. The experimental findings are analyzed within the standard Dzyaloshinskii theory for cubic helimagnets. The remarkable multiplicity of modulated precursor states and the complexity of the magnetic phase diagram near the magnetic ordering are explained by the change of the character of solitonic inter-core interactions and the onset of specific confined chiral modulations in this area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA