Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39408944

RESUMEN

Hereditary spastic paraplegias are rare genetic disorders characterized by corticospinal tract impairment. Spastic paraplegia 83 (SPG83) is associated with biallelic mutations in the HPDL gene, leading to varied severities from neonatal to juvenile onset. The function of HPDL is unclear, though it is speculated to play a role in alternative coenzyme Q10 biosynthesis. Here, we report the generation of hiPS lines from primary skin fibroblasts derived from three SPG83 patients with different HPDL mutations, using episomal reprogramming. The patients' clinical characteristics are carefully listed. The hiPS lines were meticulously characterized, demonstrating typical pluripotent characteristics through immunofluorescence assays for stemness markers (OCT4, TRA1-60, NANOG, and SSEA4) and RT-PCR for endogenous gene expression. Genetic integrity and identity were confirmed via Sanger sequencing and short tandem repeat analysis. These hiPS cells displayed typical pluripotent characteristics and were able to differentiate into neocortical neurons via a dual SMAD inhibition protocol. In addition, HPDL mutant neurons assessed via long-term culturing were able to achieve effective maturation, similarly to their wild-type counterparts. The HPDL hiPS lines we generated will provide a valuable model for studying SPG83, offering insights into its molecular mechanisms and potential for developing targeted therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mutación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Femenino , Fibroblastos/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Diferenciación Celular/genética , Línea Celular , Neuronas/metabolismo , Neuronas/patología , Niño
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473862

RESUMEN

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Asunto(s)
Ataxia Cerebelosa , Células Madre Pluripotentes , Paraplejía Espástica Hereditaria , Animales , Humanos , Paraplejía Espástica Hereditaria/genética , Neuronas , Axones , Mutación
3.
Small ; 19(30): e2205871, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058009

RESUMEN

Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratones , Animales , Humanos , Neuronas , Médula Espinal/fisiología , Diferenciación Celular/fisiología , Neurogénesis , Células Cultivadas
4.
Stem Cell Res ; 79: 103472, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38889632

RESUMEN

Hereditary spastic paraplegias (HSPs) a group of rare, clinically, and genetically heterogeneous disorders characterized by progressive degeneration of the corticospinal tract. Among these HSPs, SPG31 is due to autosomal dominant mutations in the receptor expression-enhancing protein 1 (REEP1) gene. Over 80 genes have been associated with HSPs, and the list is constantly growing as research progresses. This study is aimed to create a patient-derived human induced pluripotent stem cell (hiPSC) line with a specific nonsense mutation to better characterize the etiopathogenesis of the disease.


Asunto(s)
Fibroblastos , Heterocigoto , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fibroblastos/metabolismo , Línea Celular , Mutación , Diferenciación Celular , Masculino
5.
Pharmaceutics ; 15(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111581

RESUMEN

Neuroprotective drug delivery to the posterior segment of the eye represents a major challenge to counteract vision loss. This work focuses on the development of a polymer-based nanocarrier, specifically designed for targeting the posterior eye. Polyacrylamide nanoparticles (ANPs) were synthesised and characterised, and their high binding efficiency was exploited to gain both ocular targeting and neuroprotective capabilities, through conjugation with peanut agglutinin (ANP:PNA) and neurotrophin nerve growth factor (ANP:PNA:NGF). The neuroprotective activity of ANP:PNA:NGF was assessed in an oxidative stress-induced retinal degeneration model using the teleost zebrafish. Upon nanoformulation, NGF improved the visual function of zebrafish larvae after the intravitreal injection of hydrogen peroxide, accompanied by a reduction in the number of apoptotic cells in the retina. Additionally, ANP:PNA:NGF counteracted the impairment of visual behaviour in zebrafish larvae exposed to cigarette smoke extract (CSE). Collectively, these data suggest that our polymeric drug delivery system represents a promising strategy for implementing targeted treatment against retinal degeneration.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36078275

RESUMEN

In dental clinics, the infections may be acquired through contaminated devices, air, and water. Aerosolized water may contain bacteria, grown into the biofilm of dental unit waterlines (DUWLs). We evaluated a disinfection method based on water osmosis and chlorination with chlorine dioxide (O-CD), applied to DUWL of five dental clinics. Municipal water was chlorinated with O-CD device before feeding all DUWLs. Samplings were performed on water/air samples in order to research total microbial counts at 22-37 °C, Pseudomonas aeruginosa, Legionella spp., and chlorine values. Water was collected from the taps, spittoons, and air/water syringes. Air was sampled before, during, and after 15 min of aerosolizing procedure. Legionella and P. aeruginosa resulted as absent in all water samples, which presented total microbial counts almost always at 0 CFU/mL. Mean values of total chlorine ranged from 0.18-0.23 mg/L. Air samples resulted as free from Legionella spp. and Pseudomonas aeruginosa. Total microbial counts decreased from the pre-aerosolizing (mean 2.1 × 102 CFU/m3) to the post-aerosolizing samples (mean 1.5 × 10 CFU/m3), while chlorine values increased from 0 to 0.06 mg/L. O-CD resulted as effective against the biofilm formation in DUWLs. The presence of residual activity of chlorine dioxide also allowed the bacteria reduction from air, at least at one meter from the aerosolizing source.


Asunto(s)
Desinfección , Legionella , Bacterias , Biopelículas , Cloro/farmacología , Compuestos de Cloro , Recuento de Colonia Microbiana , Equipo Dental , Desinfección/métodos , Contaminación de Equipos/prevención & control , Ósmosis , Óxidos , Pseudomonas aeruginosa , Agua , Microbiología del Agua
7.
Stem Cell Reports ; 17(7): 1683-1698, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35714598

RESUMEN

Congenital alterations in the levels of the transcription factor Forkhead box g1 (FOXG1) coding gene trigger "FOXG1 syndrome," a spectrum that recapitulates birth defects found in the "congenital Zika syndrome," such as microcephaly and other neurodevelopmental conditions. Here, we report that Zika virus (ZIKV) infection alters FOXG1 nuclear localization and causes its downregulation, thus impairing expression of genes involved in cell replication and apoptosis in several cell models, including human neural progenitor cells. Growth factors, such as EGF and FGF2, and Thr271 residue located in FOXG1 AKT domain, take part in the nuclear displacement and apoptosis protection, respectively. Finally, by progressive deletion of FOXG1 sequence, we identify the C-terminus and the residues 428-481 as critical domains. Collectively, our data suggest a causal mechanism by which ZIKV affects FOXG1, its target genes, cell cycle progression, and survival of human neural progenitors, thus contributing to microcephaly.


Asunto(s)
Microcefalia , Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Regulación hacia Abajo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Virus Zika/fisiología , Infección por el Virus Zika/genética
8.
Cells ; 9(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806773

RESUMEN

Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/parasitología , Enfermedad de Alzheimer/virología , Microcefalia/parasitología , Microcefalia/virología , Células-Madre Neurales/parasitología , Células-Madre Neurales/virología , Trastornos del Neurodesarrollo/parasitología , Trastornos del Neurodesarrollo/virología , Animales , Infecciones por Virus ADN/complicaciones , Infecciones por Virus ADN/virología , Virus ADN/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Ratones , Infecciones por Virus ARN/complicaciones , Infecciones por Virus ARN/virología , Virus ARN/patogenicidad , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA