Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791386

RESUMEN

The incidence of syphilis has risen worldwide in the last decade in spite of being an easily treated infection. The causative agent of this sexually transmitted disease is the bacterium Treponema pallidum subspecies pallidum (TPA), very closely related to subsp. pertenue (TPE) and endemicum (TEN), responsible for the human treponematoses yaws and bejel, respectively. Although much focus has been placed on the question of the spatial and temporary origins of TPA, the processes driving the evolution and epidemiological spread of TPA since its divergence from TPE and TEN are not well understood. Here, we investigate the effects of recombination and selection as forces of genetic diversity and differentiation acting during the evolution of T. pallidum subspecies. Using a custom-tailored procedure, named phylogenetic incongruence method, with 75 complete genome sequences, we found strong evidence for recombination among the T. pallidum subspecies, involving 12 genes and 21 events. In most cases, only one recombination event per gene was detected and all but one event corresponded to intersubspecies transfers, from TPE/TEN to TPA. We found a clear signal of natural selection acting on the recombinant genes, which is more intense in their recombinant regions. The phylogenetic location of the recombination events detected and the functional role of the genes with signals of positive selection suggest that these evolutionary processes had a key role in the evolution and recent expansion of the syphilis bacteria and significant implications for the selection of vaccine candidates and the design of a broadly protective syphilis vaccine.


Asunto(s)
Sífilis , Infecciones por Treponema , Buba , Humanos , Filogenia , Sífilis/epidemiología , Sífilis/microbiología , Treponema pallidum/genética , Infecciones por Treponema/microbiología , Buba/microbiología
2.
Proc Natl Acad Sci U S A ; 110(5): 1791-6, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319632

RESUMEN

Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE.


Asunto(s)
Evolución Biológica , Cianobacterias/metabolismo , Oxígeno/metabolismo , Filogenia , Atmósfera , Teorema de Bayes , Biodiversidad , Cianobacterias/clasificación , Cianobacterias/genética , Variación Genética , Cadenas de Markov , Datos de Secuencia Molecular , Método de Montecarlo , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
3.
PLoS Biol ; 10(12): e1001434, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300376

RESUMEN

In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.


Asunto(s)
Centrómero/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histonas/metabolismo , Patrón de Herencia/genética , Espermatozoides/metabolismo , Animales , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Drosophila melanogaster/embriología , Desarrollo Embrionario/genética , Fertilización , Fase G2/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinetocoros/metabolismo , Masculino , Proteínas Recombinantes de Fusión/metabolismo , Espermatogénesis/genética
4.
BMC Genomics ; 15: 82, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24476156

RESUMEN

BACKGROUND: Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising during a single genome-shattering event. This could provide an alternative paradigm in cancer development, replacing the gradual accumulation of genomic changes with a "one-off" catastrophic event. However, the term has been used with varying operational definitions, with the minimal consensus being a large number of locally clustered copy number aberrations. The mechanisms underlying these chromothripsis-like patterns (CTLP) and their specific impact on tumorigenesis are still poorly understood. RESULTS: Here, we identified CTLP in 918 cancer samples, from a dataset of more than 22,000 oncogenomic arrays covering 132 cancer types. Fragmentation hotspots were found to be located on chromosome 8, 11, 12 and 17. Among the various cancer types, soft-tissue tumors exhibited particularly high CTLP frequencies. Genomic context analysis revealed that CTLP rearrangements frequently occurred in genomes that additionally harbored multiple copy number aberrations (CNAs). An investigation into the affected chromosomal regions showed a large proportion of arm-level pulverization and telomere related events, which would be compatible to a number of underlying mechanisms. We also report evidence that these genomic events may be correlated with patient age, stage and survival rate. CONCLUSIONS: Through a large-scale analysis of oncogenomic array data sets, this study characterized features associated with genomic aberrations patterns, compatible to the spectrum of "chromothripsis"-definitions as previously used. While quantifying clustered genomic copy number aberrations in cancer samples, our data indicates an underlying biological heterogeneity behind these chromothripsis-like patterns, beyond a well defined "chromthripsis" phenomenon.


Asunto(s)
Genoma Humano , Neoplasias/genética , Factores de Edad , Algoritmos , Transformación Celular Neoplásica/genética , Aberraciones Cromosómicas , Análisis por Conglomerados , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Humanos , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Curva ROC
5.
J Theor Biol ; 317: 348-58, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23084998

RESUMEN

Quarantine is one possible solution to limit the propagation of an emerging infectious disease. Typically, infected individuals are removed from the population by avoiding physical contact with healthy individuals. A key factor for the success of a quarantine strategy is the carrying capacity of the facility. This is often a known parameter, while other parameters such as those defining the population structure are more difficult to assess. Here we develop a model where we explicitly introduce the carrying capacity of the quarantine facility into a susceptible-infected-recovered (SIR) framework. We show how the model can address the propagation and control of contact and sexually transmitted infections. We illustrate this by a case study of the city of Zurich during the 16th century, when it had to face an epidemic of syphilis. After Swiss mercenaries came back from a war in Naples in 1495, the authorities of the city addressed subsequent epidemics by, among others, placing infected members of the population in quarantine. Our results suggest that a modestly sized quarantine facility can successfully prevent or reduce an epidemic. However, false detection can present a real impediment for this solution. Indiscriminate quarantine of individuals can lead to the overfilling of the facility, and prevent the intake of infected individuals. This results in the failure of the quarantine policy. Hence, improving the rate of true over false detection becomes the key factor for quarantine strategies. Moreover, in the case of sexually transmitted infections, asymmetries in the male to female ratio, and the force of infection pertaining to each sex and class of sexual encounter can alter the effectiveness of quarantine measures. For example, a heterosexually transmitted disease that mainly affects one sex is harder to control in a population with more individuals of the opposite sex. Hence an imbalance in the sex ratios as seen in situations such as mining colonies, or populations at war, can present impediments for the success of quarantine policies.


Asunto(s)
Epidemias/historia , Modelos Biológicos , Cuarentena/historia , Femenino , Historia del Siglo XVI , Humanos , Masculino , Análisis Numérico Asistido por Computador , Suiza/epidemiología , Sífilis/epidemiología , Sífilis/transmisión
6.
PLoS Comput Biol ; 8(4): e1002468, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511858

RESUMEN

Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types -nitrogen fixing or photosynthetic- that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , Evolución Clonal/genética , Cianobacterias/genética , Modelos Genéticos , División Celular , Simulación por Computador
7.
J Bacteriol ; 194(13): 3555, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689241

RESUMEN

Fibrella aestuarina BUZ 2(T) is the type strain of the recently characterized genus Fibrella. Here we report the draft genome sequence of this strain, which consists of a single scaffold representing the chromosome (with 11 gaps) and a 161-kb circular plasmid.


Asunto(s)
Cytophagaceae/genética , Genoma Bacteriano , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Cytophagaceae/clasificación , Cytophagaceae/aislamiento & purificación , Datos de Secuencia Molecular , Plásmidos/genética
8.
J Bacteriol ; 194(16): 4445, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22843583

RESUMEN

Fibrisoma limi strain BUZ 3(T), a Gram-negative bacterium, was isolated from coastal mud from the North Sea (Fedderwardersiel, Germany) and characterized using a polyphasic approach in 2011. The genome consists of a chromosome of about 7.5 Mb and three plasmids.


Asunto(s)
Cytophagaceae/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Cromosomas Bacterianos , Cytophagaceae/aislamiento & purificación , Sedimentos Geológicos/microbiología , Alemania , Datos de Secuencia Molecular , Mar del Norte , Plásmidos
9.
Proc Biol Sci ; 279(1742): 3457-66, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22696525

RESUMEN

A fundamental advancement in the evolution of complexity is division of labour. This implies a partition of tasks among cells, either spatially through cellular differentiation, or temporally via a circadian rhythm. Cyanobacteria often employ either spatial differentiation or a circadian rhythm in order to separate the chemically incompatible processes of nitrogen fixation and photosynthesis. We present a theoretical framework to assess the advantages in terms of biomass production and population size for three species types: terminally differentiated (heterocystous), circadian, and an idealized species in which nitrogen and carbon fixation occur without biochemical constraints. On the basis of real solar irradiance data at different latitudes, we simulate population dynamics in isolation and in competition for light over a period of 40 years. Our results show that in isolation and regardless of latitude, the biomass of heterocystous cyanobacteria that optimally invest resources is comparable to that of the idealized unconstrained species. Hence, spatial division of labour overcomes biochemical constraints and enhances biomass production. In the circadian case, the strict temporal task separation modelled here hinders high biomass production in comparison with the heterocystous species. However, circadian species are found to be successful in competition for light whenever their resource investment prevents a waste of fixed nitrogen more effectively than do heterocystous species. In addition, we show the existence of a trade-off between population size and biomass accumulation, whereby each species can optimally invest resources to be proficient in biomass production or population growth, but not necessarily both. Finally, the model produces chaotic dynamics for population size, which is relevant to the study of cyanobacterial blooms.


Asunto(s)
Cianobacterias/citología , Cianobacterias/crecimiento & desarrollo , Modelos Biológicos , Fijación del Nitrógeno , Biomasa , Ciclo del Carbono , Simulación por Computador , Cianobacterias/fisiología , Fotosíntesis , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Luz Solar
10.
BMC Microbiol ; 12: 177, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22894826

RESUMEN

BACKGROUND: In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. RESULTS: We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic distances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. CONCLUSIONS: A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological characteristics of cyanobacteria.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/citología , Dosificación de Gen , Genes de ARNr , Filogenia , Cianobacterias/genética , Operón
11.
BMC Evol Biol ; 11: 45, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21320320

RESUMEN

BACKGROUND: Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45-2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms. RESULTS: We conducted and compared phylogenetic analyses of 16S rDNA sequences from a large sample of taxa representing the morphological and genetic diversity of cyanobacteria. We reconstructed ancestral character states on 10,000 phylogenetic trees. The results suggest that the majority of extant cyanobacteria descend from multicellular ancestors. Reversals to unicellularity occurred at least 5 times. Multicellularity was established again at least once within a single-celled clade. Comparison to the fossil record supports an early origin of multicellularity, possibly as early as the "Great Oxygenation Event" that occurred 2.45-2.22 billion years ago. CONCLUSIONS: The results indicate that a multicellular morphotype evolved early in the cyanobacterial lineage and was regained at least once after a previous loss. Most of the morphological diversity exhibited in cyanobacteria today--including the majority of single-celled species--arose from ancient multicellular lineages. Multicellularity could have conferred a considerable advantage for exploring new niches and hence facilitated the diversification of new lineages.


Asunto(s)
Evolución Biológica , Cianobacterias/genética , Filogenia , Teorema de Bayes , Cianobacterias/clasificación , ADN Bacteriano/genética , Funciones de Verosimilitud , Modelos Genéticos , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 61(Pt 6): 1418-1424, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20601484

RESUMEN

An orange-pigmented, Gram-staining-negative, non-motile, filament-forming, rod-shaped bacterium (BUZ 3(T)) was isolated from a coastal mud sample from the North Sea (Fedderwardersiel, Germany) and characterized taxonomically using a polyphasic approach. According to 16S rRNA gene sequence data, it belonged to the family Cytophagaceae, exhibiting low 16S rRNA gene sequence similarity (<90 %) with members of the genera Spirosoma, Rudanella and Fibrella. The DNA G+C content was 52.0 mol%. The major fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH), C(16 : 1)ω5c and iso-C(17 : 0) 3-OH. The major polar lipids consisted of phosphatidylethanolamine and several aminolipids. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it is proposed that strain BUZ 3(T) represents a novel genus and species, for which the name Fibrisoma limi gen. nov., sp. nov. is proposed. The type strain is BUZ 3(T) ( = DSM 22564(T)  = CCUG 58137(T)).


Asunto(s)
Cytophagaceae/clasificación , Cytophagaceae/aislamiento & purificación , Microbiología del Suelo , Composición de Base , Análisis por Conglomerados , Cytophagaceae/química , Cytophagaceae/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Alemania , Datos de Secuencia Molecular , Mar del Norte , Fosfolípidos/análisis , Filogenia , Pigmentos Biológicos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Int J Syst Evol Microbiol ; 61(Pt 1): 184-189, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20190021

RESUMEN

A Gram-staining-negative, pink bacterium, designated strain BUZ 2(T), was isolated from coastal mud from the North Sea (Fedderwardersiel, Germany). Cells were rod-shaped and able to form multicellular filaments. Growth after 7 days was observed at 10-40 °C, at pH 6-8 and with 0-0.5 % NaCl. The phylogenetic tree based on 16S rRNA gene sequences indicated that strain BUZ 2(T) is a member of the family Cytophagaceae, its closest neighbours being Rudanella lutea 5715S-11(T), Spirosoma linguale LMG 10896(T) and Spirosoma panaciterrae Gsoil 1519(T) (87.8, 86.4 and 86.1 % sequence similarity, respectively). The major fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH), C(16 : 1)ω5c and iso-C(15 : 0). The predominant respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine and several unidentified aminophospholipids. The DNA G+C content was 56.5 mol%. On the basis of this polyphasic study, we propose that strain BUZ 2(T) represents a novel genus and species, for which the name Fibrella aestuarina gen. nov., sp. nov. is proposed. The type strain of Fibrella aestuarina is BUZ 2(T) (=DSM 22563(T) =CCUG 58136(T)). An emended description of the genus Rudanella is also proposed.


Asunto(s)
Cytophagaceae/clasificación , Cytophagaceae/aislamiento & purificación , Sedimentos Geológicos , Microbiología del Suelo , Composición de Base , Análisis por Conglomerados , Cytophagaceae/genética , Cytophagaceae/fisiología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Alemania , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mar del Norte , Fosfolípidos/análisis , Filogenia , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Temperatura
14.
J Theor Biol ; 262(1): 23-34, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19761779

RESUMEN

A common trait often associated with multicellularity is cellular differentiation, which is a spatial separation of tasks through the division of labor. In principle, the division of labor does not necessarily have to be constrained to a multicellular setting. In this study, we focus on the possible evolutionary paths leading to terminal differentiation in cyanobacteria. We develop mathematical models for two developmental strategies. First, of populations of terminally differentiated single cells surviving by the exchange of common goods. Second, of populations exhibiting terminal differentiation in a multicellular setting. After testing the two strategies against the effect of disruptive mutations (i.e. "cheater" mutants), we assess the effects of selection on the optimization of the ratio of vegetative (carbon fixing) to heterocystous (nitrogen fixing) cells, which in turn leads to the maximization of the carrying capacity for the population density. In addition, we compare the performance of differentiated populations to undifferentiated ones that temporally separate tasks in accordance to a day/night cycle. We then compare some predictions of our model with phylogenetic relationships derived from analyzing 16S rRNA sequences of different cyanobacterial strains. In line with studies indicating that group or spatial structure are ways to evolve cooperation and protect against the spread of cheaters, our work shows that compartmentalization afforded by multicellularity is required to maintain the vegetative/heterocyst division in cyanobacteria. We find that multicellularity allows for selection to optimize the carrying capacity. These results and the phylogenetic analysis indicates that terminally differentiated cyanobacteria evolved after undifferentiated species. In addition, we show that, in regimes of short daylight periods, terminally differentiated species perform worse than undifferentiated species that follow the day/night cycle; indicating that undifferentiated species have an evolutionary advantage in regimes of short daylight periods.


Asunto(s)
Compartimento Celular/fisiología , Cianobacterias/citología , Cianobacterias/crecimiento & desarrollo , Evolución Molecular , Comunicación Celular/fisiología , Compartimento Celular/genética , División Celular/genética , División Celular/fisiología , Cianobacterias/genética , Cianobacterias/fisiología , Especiación Genética , Modelos Biológicos , Modelos Teóricos , Mutación/fisiología , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Fotoperiodo , Filogenia , Factores de Tiempo
15.
PLoS One ; 13(7): e0200773, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30059541

RESUMEN

Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP0705. Together with analysis of the 23S rRNA gene mutations for macrolide resistance, we propose these loci as MLST for TPA. Among clinical samples, 23 allelic profiles as well as a high percentage (80% samples) of macrolide resistance were revealed. The new MLST has higher discriminatory power compared to previous typing schemes, enabling distinction of TPA from other treponemal bacteria, distinction between the two main TPA clades (Nichols and SS14), and differentiation of strains within these clades.


Asunto(s)
Tipificación de Secuencias Multilocus/métodos , Análisis de Secuencia de ADN/métodos , Treponema pallidum/genética , Alelos , Antibacterianos/farmacología , ADN Bacteriano/genética , Francia/epidemiología , Genoma Bacteriano , Genotipo , Globo Pálido , Macrólidos/farmacología , Filogenia , Polimorfismo de Nucleótido Simple , ARN Ribosómico 23S/genética , Suiza/epidemiología , Sífilis/epidemiología
16.
BMC Evol Biol ; 7: 80, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17517124

RESUMEN

BACKGROUND: Female only unisexual vertebrates that reproduce by hybridogenesis show an unusual genetic composition. They are of hybrid origin but show no recombination between the genomes of their parental species. Instead, the paternal genome is discarded from the germline prior to meiosis, and gametes (eggs only) contain solely unrecombined maternal genomes. Hence hybridogens only transmit maternally inherited mutations. Hybridity is restored each generation by backcrossing with males of the sexual parental species whose genome was eliminated. In contrast, recombining sexual species propagate an intermixed pool of mutations derived from the maternal and paternal parts of the genome. If mutation rates are lower in female gametes than males, it raises the possibility for lower mutation accumulation in a hybridogenetic population, and consequently, higher population fitness than its sexual counterpart. RESULTS: We show through Monte-Carlo simulations that at higher male to female mutation ratios, and sufficiently large population sizes, hybridogenetic populations can carry a lower mutation load than sexual species. This effect is more pronounced with synergistic forms of epistasis. Mutations accumulate faster on the sexual part of the genome, and with the purifying effects of epistasis, it makes it more difficult for mutations to be transmitted on the clonal part of the genome. In smaller populations, the same mechanism reduces the speed of Muller's Ratchet and the number of fixed mutations compared to similar asexual species. CONCLUSION: Since mutation accumulation can be less pronounced in hybridogenetic populations, the question arises why hybridogenetic organisms are so scarce compared to sexual species. In considering this, it is likely that comparison of population fitnesses is not sufficient. Despite competition with the sexual parental species, hybrid populations are dependent on the maintenance of--and contact with--their sexual counterpart. Other problems may involve too little genetic diversity to respond to changing environments and problems in becoming hybridogenetic (e.g. disruption of meiosis and subsequent infertility or sterility). Yet, lower mutation accumulation in hybridogenetic populations opens the possibility that hybridogenetic species can develop into new sexual species once recombination is re-established and reproductive isolation from sexual ancestors has occurred.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Mutación , Reproducción Asexuada/genética , Reproducción/genética , Animales , Evolución Biológica , Femenino , Masculino , Método de Montecarlo , Densidad de Población , Selección Genética
17.
GMS Hyg Infect Control ; 11: Doc13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303653

RESUMEN

Syphilis is considered as one of the most devastating sexually transmitted diseases in human history. Based on historical records, the "Böse Blattern" (German for "Evil Pocks") spread through Europe after 1495 and shared symptoms with what we know today as syphilis. Many cities took measures to protect their population. Here, transliterations of archival documents from the 15(th) and 16(th) century (provided in the appendix) are used to trace the steps taken by the governing authorities in Zurich to deal with this emerging infectious disease. One of the central measures taken by the city was to establish a quarantine facility referred to as the "Blatternhaus". The city doctors, including the well-known physician and naturalist Conrad Gessner, oversaw the obligatory quarantine and treatment of patients with symptoms. Treatment could range from better nutrition, herbal remedies and skin ointments to aggressive heat therapy and "smoking". Furthermore, the affliction was suspected as a sexually acquired disease, hence prostitutes and infected foreigners were extradited from the city. Meanwhile, the church used its social influence to promote a more "Christian" behavior. In several respects, the public health measures taken in the 16(th) century against a new and menacing epidemic do not diverge in their basic rationale from approaches used during the 20(th) century and today.

18.
R Soc Open Sci ; 3(9): 160554, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27703714

RESUMEN

Filamentous organisms represent an example where incomplete separation after cell division underlies the development of multicellular formations. With a view to understanding the evolution of more complex multicellular structures, we explore the transition of multicellular growth from one to two dimensions. We develop a computational model to simulate multicellular development in populations where cells exhibit density-dependent division and death rates. In both the one- and two-dimensional contexts, multicellular formations go through a developmental cycle of growth and subsequent decay. However, the model shows that a transition to a higher dimension increases the size of multicellular formations and facilitates the maintenance of large cell clusters for significantly longer periods of time. We further show that the turnover rate for cell division and death scales with the number of iterations required to reach the stationary multicellular size at equilibrium. Although size and life cycles of multicellular organisms are affected by other environmental and genetic factors, the model presented here evaluates the extent to which the transition of multicellular growth from one to two dimensions contributes to the maintenance of multicellular structures during development.

19.
Nat Microbiol ; 2: 16245, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27918528

RESUMEN

The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history1. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008 (ref. 2). Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the second-line antibiotic azithromycin3. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen4. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster.


Asunto(s)
Variación Genética , Genotipo , Pandemias , Sífilis/epidemiología , Sífilis/microbiología , Treponema pallidum/clasificación , Treponema pallidum/genética , Antibacterianos/farmacología , Azitromicina/farmacología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana , Evolución Molecular , Genoma Bacteriano , Salud Global , Humanos , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Treponema pallidum/aislamiento & purificación
20.
Genetics ; 168(3): 1713-35, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15579719

RESUMEN

Dominance is a form of phenotypic robustness to mutations. Understanding how such robustness can evolve provides a window into how the relation between genotype and phenotype can evolve. As such, the issue of dominance evolution is a question about the evolution of inheritance systems. Attempts at explaining the evolution of dominance have run into two problems. One is that selection for dominance is sensitive to the frequency of heterozygotes. Accordingly, dominance cannot evolve unless special conditions lead to the presence of a high frequency of mutant alleles in the population. Second, on the basis of theoretical results in metabolic control analysis, it has been proposed that metabolic systems possess inherent constraints. These hypothetical constraints imply the default manifestation of dominance of the wild type with respect to the effects of mutations at most loci. Hence, some biologists have maintained that an evolutionary explanation is not relevant to dominance. In this article, we put into question the hypothetical assumption of default metabolic constraints. We show that this assumption is based on an exclusion of important nonlinear interactions that can occur between enzymes in a pathway. With an a priori exclusion of such interactions, the possibility of epistasis and hence dominance modification is eliminated. We present a theoretical model that integrates enzyme kinetics and population genetics to address dominance evolution in metabolic pathways. In the case of mutations that decrease enzyme concentrations, and given the mechanistic constraints of Michaelis-Menten-type catalysis, it is shown that dominance of the wild type can be extensively modified in a two-enzyme pathway. Moreover, we discuss analytical results indicating that the conclusions from the two-enzyme case can be generalized to any number of enzymes. Dominance modification is achieved chiefly through changes in enzyme concentrations or kinetic parameters such as k(cat), both of which can alter saturation levels. Low saturation translates into higher levels of dominance with respect to mutations that decrease enzyme concentrations. Furthermore, it is shown that in the two-enzyme example, dominance evolves as a by-product of selection in a manner that is insensitive to the frequency of heterozygotes. Using variation in k(cat) as an example of modifier mutations, it is shown that the latter can have direct fitness effects in addition to dominance modification effects. Dominance evolution can occur in a frequency-insensitive manner as a result of selection for such dual-effects alleles. This type of selection may prove to be a common pattern for the evolution of phenotypic robustness to mutations.


Asunto(s)
Enzimas/genética , Evolución Molecular , Genes Dominantes , Metabolismo/genética , Enzimas/metabolismo , Cinética , Modelos Genéticos , Método de Montecarlo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA