Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 682: 111-117, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37806248

RESUMEN

Obesity, a chronic disease, significantly increases the risk of various diseases, including diabetes, cardiovascular diseases, and cancers. Exercise is crucial for weight management not only through energy expenditure by muscle activity but also through stimulating the secretion of myokines, which affect various tissues. Irisin, derived from the proteolytic processing of fibronectin type III domain-containing protein 5 (Fndc5), is a well-studied myokine with beneficial effects on metabolism. This study explored the feasibility of adeno-associated virus (AAV)-mediated Fndc5 gene therapy to treat obesity in a mouse model using the AAV-DIO system to express Fndc5 specifically in skeletal muscle, and investigated its anti-obesity effect. Although Fndc5 was specifically expressed in the muscle, no significant impact on body weight under normal chow or high-fat diets was observed, and no change in thermogenic gene expression in inguinal white adipose tissue was detected. Notably, Fndc5 transduction did affect bone metabolism, consistent with previous reports. These findings suggest that AAV-mediated Fndc5 gene therapy may not be an efficient strategy for obesity, contrary to our expectations. Further research is needed to elucidate the complex mechanisms involved in irisin's role in obesity and related disorders.


Asunto(s)
Dependovirus , Fibronectinas , Ratones , Animales , Fibronectinas/genética , Fibronectinas/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/terapia , Obesidad/metabolismo , Pérdida de Peso , Factores de Transcripción/metabolismo
2.
J Therm Biol ; 116: 103675, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37517326

RESUMEN

Desertification and desert sandstorms caused by the worsening global warming pose increasing risks to human health. In particular, Asian sand dust (ASD) exposure has been related to an increase in mortality and hospital admissions for respiratory diseases. In this study, we investigated the effects of ASD on metabolic tissues in comparison to diesel particulate matter (DPM) that is known to cause adverse health effects. We found that larger lipid droplets were accumulated in the brown adipose tissues (BAT) of ASD-administered but not DPM-administered mice. Thermogenic gene expression was decreased in these mice as well. When ASD-administered mice were exposed to the cold, they failed to maintain their body temperature, suggesting that the ASD administration had led to impairments in cold-induced adaptive thermogenesis. However, impaired thermogenesis was not observed in DPM-administered mice. Furthermore, mice fed a high-fat diet that were chronically administered ASD demonstrated unexplained weight loss, indicating that chronic administration of ASD could be lethal in obese mice. We further identified that ASD-induced lung inflammation was not exacerbated in uncoupling protein 1 knockout mice, whose thermogenic capacity is impaired. Collectively, ASD exposure can impair cold-induced adaptive thermogenic responses in mice and increase the risk of mortality in obese mice.


Asunto(s)
Polvo , Arena , Ratones , Humanos , Animales , Ratones Obesos , Tejido Adiposo Pardo/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Frío
3.
BMC Microbiol ; 22(1): 190, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922769

RESUMEN

Recent studies have demonstrated the potential of surface display technology in therapeutic development and enzyme immobilization. Utilization of lactic acid bacteria in non-GMO surface display applications is advantageous due to its GRAS status. This study aimed to develop a novel, non-GMO cell wall anchoring system for lactic acid bacteria using a cell-surface hydrolase (CshA) from Lactiplantibacillus plantarum SK156 for potential industrial and biomedical applications. Analysis of the CshA revealed that it does not contain any known classical anchor domains. Although CshA lacks a classical anchor domain, it successfully displayed the reporter protein superfolder GFP on the surface of several lactic acid bacteria in host dependent manner. CshA-sfGFP fusion protein was displayed greatest on Limosilactobacillus fermentum SK152. Pretreatment with trichloroacetic acid further enhanced the binding of CshA to Lm. fermentum. The binding conditions of CshA on pretreated Lm. fermentum (NaCl, pH, time, and temperature) were also optimized, resulting in a maximum binding of up to 106 CshA molecules per pretreated Lm. fermentum cell. Finally, this study demonstrated that CshA-decorated pretreated Lm. fermentum cells tolerates gastrointestinal stress, such as low pH and presence of bile acid. To our knowledge, this study is the first to characterize and demonstrate the cell-surface display ability of CshA. The potential application of CshA in non-GMO antigen delivery system and enzyme immobilization remains to be tested.


Asunto(s)
Hidrolasas , Limosilactobacillus fermentum , Membrana Celular/metabolismo , Pared Celular/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Proteínas de la Membrana/metabolismo
4.
Molecules ; 26(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34577166

RESUMEN

Lactobacillus sp. have long been studied for their great potential in probiotic applications. Recently, proteomics analysis has become a useful tool for studies on potential lactobacilli probiotics. Specifically, proteomics has helped determine and describe the physiological changes that lactic acid bacteria undergo in specific conditions, especially in the host gut. In particular, the extracellular proteome, or exoproteome, of lactobacilli contains proteins specific to host- or environment-microbe interactions. Using gel-free, label-free ultra-high performance liquid chromatography tandem mass spectrometry, we explored the exoproteome of the probiotic candidate Lactobacillus mucosae LM1 subjected to bile treatment, to determine the proteins it may use against bile stress in the gut. Bile stress increased the size of the LM1 exoproteome, secreting ribosomal proteins (50S ribosomal protein L27 and L16) and metabolic proteins (lactate dehydrogenase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenases, among others) that might have moonlighting functions in the LM1 bile stress response. Interestingly, membrane-associated proteins (transporters, peptidase, ligase and cell division protein ftsH) were among the key proteins whose secretion were induced by the LM1 bile stress response. These specific proteins from LM1 exoproteome will be useful in observing the proposed bile response mechanisms via in vitro experiments. Our data also reveal the possible beneficial effects of LM1 to the host gut.


Asunto(s)
Proteínas Bacterianas/análisis , Bilis/fisiología , Lactobacillus/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucólisis/fisiología , Proteómica/métodos , Proteínas Ribosómicas/análisis , Estimulación Química , Espectrometría de Masas en Tándem
5.
Genomics ; 111(1): 24-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277352

RESUMEN

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp.


Asunto(s)
Adaptación Fisiológica , Genoma Bacteriano , Lactobacillus/genética , Lactobacillus/metabolismo , Adaptación Fisiológica/genética , Adhesión Bacteriana , Ecosistema , Ácido Fólico/biosíntesis , Islas Genómicas , Genómica , Glucógeno/metabolismo , Glicósido Hidrolasas/metabolismo , Filogenia , Probióticos , Proteómica , Secuenciación Completa del Genoma
6.
Adv Biol (Weinh) ; 8(2): e2300192, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164809

RESUMEN

The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Amidohidrolasas , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adipocitos Blancos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Ratones Noqueados , Dieta
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167055, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38325589

RESUMEN

Klotho, an anti-aging protein, has gained attention for its protective effects against various diseases, including metabolic disorders, through recombinant Klotho administration. However, the potential of Klotho as a target for gene therapy requires further exploration, as it remains relatively understudied in the context of metabolic disorders. In this study, we demonstrate that AAV-full length(FL)-Klotho administration induces weight loss in mice and provides protection against high-fat diet (HFD)-induced obesity and hepatic steatosis, concurrently reducing the weights of white adipose tissue and liver. AAV-FL-Klotho administration also enhanced thermogenic gene expression in brown adipose tissue (BAT) and improved the morphology of interscapular BAT. The weight loss effect of AAV-FL-Klotho was found to be, at least in part, mediated by UCP1-dependent thermogenesis in brown adipocytes, potentially influenced by hepatokines secreted from AAV-FL-Klotho-transduced hepatocytes. These findings suggest that AAV-FL-Klotho is an attractive candidate for gene therapy to combat obesity. Nevertheless, unbiased experiments have also revealed disturbances in lipid metabolism due to AAV-FL-Klotho, as evidenced by the emergence of lipomas and increased expression of hepatic lipogenic proteins.


Asunto(s)
Metabolismo de los Lípidos , Enfermedades Metabólicas , Animales , Ratones , Metabolismo Energético , Obesidad/metabolismo , Pérdida de Peso
8.
Proteomes ; 9(1)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578796

RESUMEN

Probiotics must not only exert a health-promoting effect but also be capable of adapting to the harsh environment of the gastrointestinal (GI) tract. Probiotics in the GI tract must survive the cell wall-disrupting effect of bile acids. We investigated the exoproteome of Lactobacillus johnsonii PF01 and C1-10 under bile stress. A comparative analysis revealed the similarities between the two L. johnsonii exoproteomes, as well as their different responses to bile. The large number of metabolic proteins in L. johnsonii revealed its metabolic adaptation to meet protein synthesis requirements under bile stress. In addition, cell wall modifications occurred in response to bile. Furthermore, some extracellular proteins of L. johnsonii may have moonlighting function in the presence of bile. Enolase, L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 50s ribosomal protein L7/L12, and cellobiose-specific phosphotransferase system (PTS) sugar transporter were significantly upregulated under bile stress, suggesting a leading role in the collective bile stress response of L. johnsonii from its exoproteome perspective.

9.
FEMS Microbiol Lett ; 364(18)2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28934382

RESUMEN

Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.


Asunto(s)
Antibiosis/genética , Microbiología de Alimentos , Genoma Bacteriano , Limosilactobacillus fermentum/genética , Probióticos , Productos Vegetales/microbiología , Brassica/microbiología , ADN Circular/genética , Endopeptidasas/genética , Fermentación , Limosilactobacillus fermentum/clasificación , Limosilactobacillus fermentum/aislamiento & purificación , Filogenia , Secuenciación Completa del Genoma
10.
J Microbiol ; 54(7): 510-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27350617

RESUMEN

Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen-probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.


Asunto(s)
Adhesión Bacteriana , Carbohidratos/química , Yeyuno/microbiología , Lactobacillus/fisiología , Mucinas/metabolismo , Probióticos/análisis , Animales , Línea Celular , Mucosa Intestinal/microbiología , Yeyuno/metabolismo , Mucinas/química , Unión Proteica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA