Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Teach ; 39(sup1): S33-S36, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28102096

RESUMEN

BACKGROUND AND OBJECTIVES: Exams at the Faculty of Dentistry (KAUFD) are usually constructed to match King Abdulaziz University (KAU) policy of a fixed 60% cutoff score, though they have never been tested or evaluated. The purpose of this study was to validate the cutoff scores of three final fifth-year written exams of the undergraduate Endodontic course to assess whether they were similar to KAU regulation using the Angoff rating method. DESIGN AND SETTINGS: This study was conducted between May 2014 and February 2015 at the Faculty of Dentistry, King Abdulaziz University. METHODS: Using the Angoff rating method, three final fifth-year undergraduate Endodontic written exams were evaluated by four senior faculty members. RESULTS: The cutoff scores for exams 1, 2 and 3 were 57.4%, 62.9% and 63.1%, respectively. Adjusting the exams' cut off scores would cause changes in some students' results. CONCLUSIONS: Although the cutoff scores for all exams were close to 60%, slight deviation from the accepted cutoff score could definitely affect the students' results. Therefore, all exams should be validated before being given to students to certify that the cutoff score is credible and defensible.


Asunto(s)
Curriculum , Educación en Odontología , Evaluación Educacional , Estudiantes de Odontología/psicología , Humanos , Arabia Saudita , Universidades
2.
ACS Omega ; 9(2): 2945-2952, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250396

RESUMEN

The goal behind this work is to prepare, characterize, and study the antimicrobial behavior of zirconia (ZrO2) nanoparticles (NPs). Various techniques, such as X-ray diffraction (XRD), were used for studying the mineralogical structure and crystal size. The microstructure and chemical composition of the prepared particles were analyzed using a scanning electron microscope attached with an energy-dispersive X-ray analysis (EDAX) unit. The antagonistic ability against several Gram-negative and Gram-positive bacteria, including Salmonella paratyphi, Pseudomonas aeruginosa, Alcaligenes aquatilis, Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus, was assessed using the well diffusion method. The results of XRD and scanning electron microscopy (SEM) analyses revealed that the prepared material exhibited the phase of zirconium nanoparticles with particle sizes ranging between 40 and 75 nm. The antimicrobial test results demonstrated that the inhibitory effect increased with the increase of concentration. The inhibitory effect was more pronounced against Gram-positive bacteria, as indicated by the larger size of the inhibitory zone. At a 9% dimethyl sulfoxide (DMSO) concentration, the inhibitory zone had a diameter of 3.50 mm for S. aureus compared to a diameter of 3.40 mm for S. pneumoniae. The use of zirconium oxide nanoparticles reduced the diameter of the inhibitory zone when tested against S. aureus at a 3% DMSO concentration (0.50 mm diameter) and against S. pneumoniae (0.40 mm diameter). Zirconia nanoparticles were also evaluated for their antifungal activity against several species, including Aspergillus niger, Aspergillus flavus, and Penicillium sp. The size of the inhibitory zone indicated the susceptibility of microorganisms to nanozirconium oxide, resulting in a stronger inhibition of Penicillium sp. at a 100% DMSO concentration (4.50 mm diameter) compared to A. niger and A. flavus (3.00 mm diameter). The results for Penicillium sp. at a 3% DMSO concentration showed a diameter of the inhibitory zone of 0.90 mm, while for A. niger and A. flavus, the diameter was 0.80 mm. Thus, our findings demonstrate that the zirconium oxide nanoparticles possess the capability to reduce the inhibition zone effectively for both bacterial and fungal activities.

3.
Microorganisms ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276170

RESUMEN

Dental caries is an infectious oral disease caused by the presence of different bacteria in biofilms. Multidrug resistance (MDR) is a major challenge of dental caries treatment. Swabs were taken from 65 patients with dental caries in Makkah, Saudi Arabia. Swabs were cultivated on mitis salivarius agar and de Man, Rogosa, and Sharpe (MRS) agar. VITEK 2 was used for the identification of isolated bacteria. Antibiotic susceptibility testing of the isolated bacteria was performed using commercial antibiotic disks. Ulva lactuca was used as a reducing agent and cellulose source to create nanocellulose and Ag/cellulose nanocomposites. Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction spectroscopy (XRD) were used to characterize nanocellulose and Ag/cellulose nanocomposites. The results showed that most bacterial isolates were Streptococcus spp., followed by Staphylococcus spp. on mitis salivarius media. Lactobacillus spp. and Corynebacterium group f-1 were the bacterial isolates on de Man, Rogosa, and Sharpe (MRS) media. The antibiotic susceptibility test revealed resistance rates of 77%, 93%, 0, 83%, 79%, and 79% against penicillin G, Augmentin, metronidazole, ampicillin, ciprofloxacin, and cotrimoxazole, respectively. Ag/cellulose nanocomposites and Ag/cellulose nanocomposites with fluoride were the most effective antibacterial agents. The aim of this work was to assess the antibacterial activity of Ag/cellulose nanocomposites with and without fluoride against bacteria isolated from the oral cavities of patients with dental caries. This study demonstrated that Ag/cellulose nanocomposites have antibacterial properties against multidrug-resistant bacteria that cause dental caries.

4.
Materials (Basel) ; 15(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35207914

RESUMEN

This study aimed to test the biocompatibility and antibacterial properties of Salvadora persica (S. persica) extract, a natural product, as an intracanal medication in comparison with calcium hydroxide (Metapaste, META BIOMED, Cheongju, Korea). The pH values of both materials were tested. The biocompatibility of S. persica extract and Metapaste was determined using light microscopy and MTT assays. The antibacterial action was tested using the zone of bacterial inhibition on four common bacterial species. In addition, intracanal medication was administered using 68 extracted single-rooted teeth contaminated with Enterococcus faecalis (E. faecalis), and the percentage reduction in colony count (% RCC) at 1, 3, and 7 days was measured. The extension of activity for both materials was assessed using histological sections and scanning electron microscopy. S. persica was found to be acidic in nature. Both materials showed significantly lower cell viability than the positive control cells on days 1 and 3 but not on day 7. S. persica showed better antibacterial effects against E. faecalis and S. mutans. S. persica extract showed 97.6%, 98.9%, and 99.3% RCC values at 1, 3, and 7 days, respectively, which are comparable to those of Metapaste. S. persica herbal extract is a promising material that can be utilized as an intracanal medication, but its use requires further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA