Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739779

RESUMEN

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Asunto(s)
Cobre , Oro , Nanopartículas del Metal , Titanio , Nanopartículas del Metal/química , Titanio/química , Oro/química , Cobre/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/economía , Humanos , COVID-19/virología , COVID-19/diagnóstico , Oro Coloide/química , SARS-CoV-2/aislamiento & purificación
2.
Photochem Photobiol Sci ; 19(11): 1559-1568, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33030168

RESUMEN

Ultraviolet B (UVB) radiation induces autophagy responses, which play a role in the regulation of the oncogenic processes of irradiated cells. However, the mechanism of autophagy responses post-UVB irradiation remains to be fully elucidated. Previous studies indicate that UVB radiation induces the activation and uncoupling of constitutive nitric oxide synthases (cNOS), which produce nitric oxide and peroxynitrite; both have been shown to regulate autophagy responses. In this study, the UVB-induced autophagy responses were analysed in cell line- and UVB dose-dependent manners, and the role of cNOS in UVB-induced autophagy responses was also studied. Our data showed that UVB induces both autophagosome formation and degradation, and that cNOS is involved in the regulation of autophagy responses post UVB exposure. Both nitric oxide and peroxynitrite, the two products that are produced in cells immediately after UVB exposure, could upregulate autophagy in a dose-dependent manner. Furthermore, cNOS is involved in the UVB-induced downregulation of SQSTM1/p62, a scaffold protein used as a reporter of the autophagy response. However, the cNOS-mediated reduction of SQSTM1/p62 is autophagy-independent post UVB irradiation. Our results indicated that autophagy responses post UVB exposure are a dynamic balance of autophagosome formation and degradation, with cNOS playing a role in the regulation of the balance.


Asunto(s)
Autofagia/efectos de la radiación , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Óxido Nítrico Sintasa/metabolismo , Rayos Ultravioleta , Células Cultivadas , Humanos , Queratinocitos/patología , Factores de Tiempo
3.
Endocr Relat Cancer ; 31(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174978

RESUMEN

Radiotherapy is one of the major options currently for cancer treatment. Radiotherapy causes cellular damage inducing cell death, which is expected to be selective for tumor cells. However, side effects that alter the surrounding normal tissue are often hard to be avoided. When radiation involves the hypothalamic-pituitary axis, growth hormone deficiency (GHD) is frequently induced, causing developmental and metabolic-related diseases in childhood cancer survivors. Growth hormone (GH) replacement therapy has been used for these patients and has been shown to be safe in general. However, there are some debating for its long-term safety due to the known roles of GH in inducing cell growth, which could be related to cancer recurrence. In addition, studies have shown that GH is involved in the development of resistance to chemotherapy and radiotherapy through various mechanisms. In this review, we will first discuss the effects of GHD induced after radiotherapy and the safety of the GH replacement treatment. Then, we will discuss the role of the GH-IGF-1 axis in radioresistance via a mechanism of improving DNA repair.


Asunto(s)
Hormona de Crecimiento Humana , Hipopituitarismo , Humanos , Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Terapia de Reemplazo de Hormonas
4.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38260353

RESUMEN

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold NPs-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic nanoparticles (NPs) based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. To the best of our knowledge, our study represents the 1st application of laser-ablation-fabricated nanoparticles (TiN) in the LFA and dot-blot biotesting. Since the main cost of the Au NPs in commercial testing kits is in the colloidal synthesis, our development with TiN is very exciting, offering potentially very inexpensive plasmonic nanomaterials for various bio-testing applications. Moreover, our machine learning study showed that the bio-detection with TiN is more accurate than that with Au.

5.
Photochem Photobiol ; 99(2): 498-508, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36591940

RESUMEN

The endoplasmic reticulum (ER) plays an important role in the regulation of protein synthesis. Alterations in the folding capacity of the ER induce stress, which activates three ER sensors that mediate the unfolded protein response (UPR). Components of the pathways regulated by these sensors have been shown to regulate autophagy. The last corresponds to a mechanism of self-eating and recycling important for proper cell maintenance. Ultraviolet radiation (UV) is an external damaging stimulus that is known for inducing oxidative stress, and DNA, lipid and protein damage. Many controversies exist regarding the role of UV-inducing ER stress or autophagy. However, a connection between the three of them has not been addressed. In this review, we will discuss the contradictory theories regarding the relationships between UV radiation with the induction of ER stress and autophagy, as well as hypothetic connections between UV, ER stress and autophagy.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Rayos Ultravioleta , Respuesta de Proteína Desplegada , Estrés Oxidativo , Humanos , Animales
6.
Photochem Photobiol ; 98(5): 1140-1148, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34932214

RESUMEN

Ultraviolet B-light (UVB) has been often used as a "physiological" UV in photobiology studies. How representative and equivalent these studies are compared to the effect of the sunlight is always of great interest. We now characterized the spectrum and intensity of two commonly used UV sources, a UVB lamp and a UVA-340 lamp which simulate the solar spectrum in the UVB/UVA range in the presence or absence of a UVB band pass filter that reduces >80% UVA from the UVA-340 lamp. The spectrum of each lamp was used in computational modeling for skin penetration. The effects of the lamps on endoplasmic reticulum (ER)-stress response and DNA damage in cultured keratinocytes HaCaT cells were analyzed. Our data show that the UVB lamp is a better inducer for both eIF2α phosphorylation and PERK modification, as well as a better reducer of ATF6 expression. The UVB lamp is also the best inducer of gamma-H2AX expression and cyclobutane pyrimidine dimers formation. However, the UVA-340 lamp is a better inducer for ATF4 expression. Our results indicate that different spectral characteristics of UV lamps can produce different results for the activation of the ER-stress responses and the differences do not always follow a defined pattern.


Asunto(s)
Dímeros de Pirimidina , Rayos Ultravioleta , Daño del ADN , Dímeros de Pirimidina/metabolismo , Piel/metabolismo , Luz Solar
7.
Life Sci ; 286: 120044, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637792

RESUMEN

AIM: To elucidate the mechanism behind the sustained high levels of phosphorylated eIF2α in HaCaT cells post-UVB. MAIN METHODS: In this study, expression levels of the machinery involved in the dephosphorylation of eIF2α (GADD34, CReP and PP1), as well as the PERK-eIF2α-ATF4-CHOP, IRE1α/XBP1s and ATF6α signaling cascades, were analyzed by western blot and fluorescence microscope. KEY FINDINGS: Our data showed that UVB induces the phosphorylation of eIF2α, which induces the translation of ATF4 and consequently the expression of CHOP and GADD34. Nevertheless, UVB also suppresses the translation of ATF4 and GADD34 in HaCaT cells via a p-eIF2α independent mechanism. Therefore, the lack of ATF4, GADD34 and CReP is responsible for the sustained phosphorylation of eIF2α. Finally, our data also showed that UVB selectively modifies PERK and downregulates ATF6α expression but does not induce activation of the IRE1α/XBP1s pathway in HaCaT cells. SIGNIFICANCE: Novel mechanism to explain the prolonged phosphorylation of eIF2α post-UVB irradiation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Queratinocitos/efectos de la radiación , Factor de Transcripción Activador 4/metabolismo , Línea Celular , Endorribonucleasas/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Queratinocitos/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factor de Transcripción CHOP/metabolismo , Rayos Ultravioleta/efectos adversos , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA