Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Electrophoresis ; 42(3): 305-314, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33128392

RESUMEN

The increasing resolution of three-dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (µFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of µFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a µFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a µFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a µFFE device based on high-resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D-printed wells that enable a defined sample fractionation (chip-to-world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D-printed µFFE device.


Asunto(s)
Electroforesis , Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip/métodos , Impresión Tridimensional , Aminoácidos/análisis , Electroforesis/instrumentación , Electroforesis/métodos , Diseño de Equipo
2.
Mikrochim Acta ; 188(3): 67, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33543321

RESUMEN

Microfluidic integration of biosensors enables improved biosensing performance and sophisticated lab-on-a-chip platform design for numerous applications. While soft lithography and polydimethylsiloxane (PDMS)-based microfluidics are still considered the gold standard, 3D-printing has emerged as a promising fabrication alternative for microfluidic systems. Herein, a 3D-printed polyacrylate-based microfluidic platform is integrated for the first time with a label-free porous silicon (PSi)-based optical aptasensor via a facile bonding method. The latter utilizes a UV-curable adhesive as an intermediate layer, while preserving the delicate nanostructure of the porous regions within the microchannels. As a proof-of-concept, a generic model aptasensor for label-free detection of his-tagged proteins is constructed, characterized, and compared to non-microfluidic and PDMS-based microfluidic setups. Detection of the target protein is carried out by real-time monitoring reflectivity changes of the PSi, induced by the target binding to the immobilized aptamers within the porous nanostructure. The microfluidic integrated aptasensor has been successfully used for detection of a model target protein, in the range 0.25 to 18 µM, with a good selectivity and an improved limit of detection, when compared to a non-microfluidic biosensing platform (0.04 µM vs. 2.7 µM, respectively). Furthermore, a superior performance of the 3D-printed microfluidic aptasensor is obtained, compared to a conventional PDMS-based microfluidic platform with similar dimensions.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Glicósido Hidrolasas/análisis , Técnicas Analíticas Microfluídicas/métodos , Resinas Acrílicas/química , Glicósido Hidrolasas/química , Ácidos Nucleicos Inmovilizados/química , Dispositivos Laboratorio en un Chip , Límite de Detección , Técnicas Analíticas Microfluídicas/instrumentación , Porosidad , Impresión Tridimensional , Prueba de Estudio Conceptual , Silicio/química
3.
Sensors (Basel) ; 20(16)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784793

RESUMEN

Electrochemical spectroscopy enables rapid, sensitive, and label-free analyte detection without the need of extensive and laborious labeling procedures and sample preparation. In addition, with the emergence of commercially available screen-printed electrodes (SPEs), a valuable, disposable alternative to costly bulk electrodes for electrochemical (bio-)sensor applications was established in recent years. However, applications with bare SPEs are limited and many applications demand additional/supporting structures or flow cells. Here, high-resolution 3D printing technology presents an ideal tool for the rapid and flexible fabrication of tailor-made, experiment-specific systems. In this work, flow cells for SPE-based electrochemical (bio-)sensor applications were designed and 3D printed. The successful implementation was demonstrated in an aptamer-based impedimetric biosensor approach for the detection of Escherichia coli (E. coli) Crooks strain as a proof of concept. Moreover, further developments towards a 3D-printed microfluidic flow cell with an integrated micromixer also illustrate the great potential of high-resolution 3D printing technology to enable homogeneous mixing of reagents or sample solutions in (bio-)sensor applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Escherichia coli , Electrodos , Impresión Tridimensional
4.
Small ; 15(2): e1804326, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548194

RESUMEN

One of the basic operations in microfluidic systems for biological and chemical applications is the rapid mixing of different fluids. However, flow profiles in microfluidic systems are laminar, which means molecular diffusion is the only mixing effect. Therefore, mixing structures are crucial to enable more efficient mixing in shorter times. Since traditional microfabrication methods remain laborious and expensive, 3D printing has emerged as a potential alternative for the fabrication of microfluidic devices. In this work, five different passive micromixers known from literature are redesigned in comparable dimensions and manufactured using high-definition MultiJet 3D printing. Their mixing performance is evaluated experimentally, using sodium hydroxide and phenolphthalein solutions, and numerically via computational fluid dynamics. Both experimental and numerical analysis results show that HC and Tesla-like mixers achieve complete mixing after 0.99 s and 0.78 s, respectively, at the highest flow rate (Reynolds number (Re) = 37.04). In comparison, Caterpillar mixers exhibit a lower mixing rate with complete mixing after 1.46 s and 1.9 s. Furthermore, the HC mixer achieves very good mixing performances over all flow rates (Re = 3.7 to 37.04), while other mixers show improved mixing only at higher flow rates.

5.
Micromachines (Basel) ; 15(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542629

RESUMEN

Continuous chromatography has emerged as one of the most attractive methods for protein purification. Establishing such systems involves installing several chromatographic units in series to enable continuous separation processes and reduce the cost of the production of expensive proteins and biopharmaceuticals (such as monoclonal antibodies). However, most of the established systems are bulky and plagued by high dead volume, which requires further optimization for improved separation procedures. In this article, we present a miniaturized periodic counter-current chromatography (PCCC) system, which is characterized by substantially reduced dead volume when compared to traditional chromatography setups. The PCCC device was fabricated by 3D printing, allowing for flexible design adjustments and rapid prototyping, and has great potential to be used for the screening of optimized chromatography conditions and protocols. The functionality of the 3D-printed device was demonstrated with respect to the capture and polishing steps during a monoclonal antibody purification process. Furthermore, this novel miniaturized system was successfully used for two different chromatography techniques (affinity and ion-exchange chromatography) and two different types of chromatographic units (columns and membrane adsorbers). This demonstrated versability underscores the flexibility of this kind of system and its potential for utilization in various chromatography applications, such as direct product capture from perfusion cell cultures.

6.
Chem Commun (Camb) ; 60(10): 1305-1308, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38197155

RESUMEN

We present the application of a photonic silicon chip-based optical sensor system for expeditious and phenotypic antifungal susceptibility testing. This label-free diagnostic assay optically monitors the growth of Candida auris at varying antifungal concentrations on a microwell-structured silicon chip in real-time, and antifungal susceptibility is detected within 6 h, four times faster than in the current gold standard method.


Asunto(s)
Antifúngicos , Candidiasis , Antifúngicos/farmacología , Candida , Candida auris , Silicio , Pruebas de Sensibilidad Microbiana
7.
ACS Omega ; 9(19): 21637-21646, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764649

RESUMEN

For the process of transient transfection (TTF), DNA is often transported into the cells using polyplexes. The polyplex uptake and the subsequent transient expression of the gene of interest are of great importance for a successful transfection. In this study, we investigated a 3D-printed microfluidic system designed to facilitate direct TTF for suspension of CHO-K1 cells. The results demonstrate that this system achieves significantly better results than the manual approach. Furthermore, the effect of both post-transfection incubation time (t) and temperature (T) on polyplex uptake was explored in light of the membrane phase transitions. Attention was paid to obtaining the highest possible transfection efficiency (TFE), viability (V), and viable cell concentration (VCC). Our results show that transfection output measured as product of VCC and TFE is optimal for t = 1 h at T = 22 °C. Moreover, post-transfection incubation at T = 22 °C with short periods of increased T at T = 40 °C were observed to further increase the output. Finally, we found that around T = 19 °C, the TFE increases strongly. This is the membrane phase transition T of CHO-K1 cells, and those results therefore suggest a correlation between membrane order and permeability (and in turn, TFE).

8.
Curr Opin Biotechnol ; 83: 102978, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531802

RESUMEN

The combination of sensors and microfluidics has become a promising approach for detecting a wide variety of targets relevant in biotechnology. Thanks to recent advances in the manufacturing of microfluidic systems, microfluidics can be manufactured faster, cheaper, and more accurately than ever before. These advances make microfluidic systems very appealing as a basis for constructing sensor systems, and microfluidic devices have been adapted to house (bio)sensors for various applications (e.g. protein biomarker detection, cell culture oxygen control, and pathogen detection). This review article highlights several successfully integrated microfluidic sensor systems, with a focus on work that has been published within the last two years. Different sensor integration methods are discussed, and the latest trends in wearable- and smartphone-based sensors are described.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Biotecnología , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Célula
9.
Cells ; 12(14)2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37508481

RESUMEN

The use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusion chambers to the overall perfusion system, which can be operated in a standard CO2-incubator. A 3D-printed adapter ensures the compatibility of the cultivation device with standard imaging systems. Cultivation and cell staining experiments with hydrogel-embedded murine fibroblasts confirmed that cell morphology, viability, and growth inside this cultivation device are comparable with those observed within standard 96-well plates. Due to the high degree of customization offered by additive manufacturing, this system has great potential to be used as a customizable platform for 3D cell culture applications.


Asunto(s)
Hidrogeles , Microfluídica , Animales , Ratones , Técnicas de Cultivo de Célula , Perfusión , Impresión Tridimensional
10.
Bioengineering (Basel) ; 10(6)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37370588

RESUMEN

Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods-such as perfusion processes-are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices-such as tangential flow filtration-rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cell concentration of 10-17 × 106 cells/mL in a hybrid mode (with alternating cell retention and cell bleed phases) while significantly reducing both shear stress and channel blockage. In addition to increasing efficiency to nearly 100%, this microfluidic device also improved production conditions by successfully separating dead cells and cell debris and increasing cell viability within the bioreactor.

11.
Adv Biochem Eng Biotechnol ; 179: 1-16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35333948

RESUMEN

Microfluidics has emerged as a powerful tool, enabling biotechnological processes to be performed on a microscale where certain physical processes (such as laminar flow, surface-to-volume ratio, and surface interactions) become dominant factors. At the same time, volumes and assay times are also reduced in microscale - which can substantially lower experimental costs. A decade ago, most microfluidic systems were only used for proof-of-concept studies; today, a wide array of microfluidic systems have been deployed to tackle various biotechnological research questions - especially regarding the analysis, screening, and understanding of cellular systems. Examples cover all biotechnological areas, from diagnostic applications in the field of medical biotechnology to the screening of potentially useful cells in the field of industrial biotechnology. As part of this review, we provide a brief introduction to microfluidics technology (including the vision of Lab-on-a-chip (LOC) systems) and survey some of the most notable applications of microfluidic technology in biotechnology to date.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Bioensayo , Biotecnología , Industrias , Dispositivos Laboratorio en un Chip
12.
Adv Biochem Eng Biotechnol ; 179: 355-380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33495924

RESUMEN

The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.


Asunto(s)
Biotecnología , Microfluídica , Biotecnología/métodos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos
13.
Mol Biotechnol ; 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515858

RESUMEN

Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices-namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size-can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.

14.
Adv Biochem Eng Biotechnol ; 179: 101-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34410457

RESUMEN

Cellular therapies are creating a paradigm shift in the biomanufacturing industry. Particularly for autologous therapies, small-scale processing methods are better suited than the large-scale approaches that are traditionally employed in the industry. Current small-scale methods for manufacturing personalized cell therapies, however, are labour-intensive and involve a number of 'open events'. To overcome these challenges, new cell manufacturing platforms following a GMP-in-a-box concept have recently come on the market (GMP: Good Manufacturing Practice). These are closed automated systems with built-in pumps for fluid handling and sensors for in-process monitoring. At a much smaller scale, microfluidic devices exhibit many of the same features as current GMP-in-a-box systems. They are closed systems, fluids can be processed and manipulated, and sensors integrated for real-time detection of process variables. Fabricated from polymers, they can be made disposable, i.e. single-use. Furthermore, microfluidics offers exquisite spatiotemporal control over the cellular microenvironment, promising both reproducibility and control of outcomes. In this chapter, we consider the challenges in cell manufacturing, highlight recent advances of microfluidic devices for each of the main process steps, and summarize our findings on the current state of the art. As microfluidic cell culture devices have been reported for both adherent and suspension cell cultures, we report on devices for the key process steps, or unit operations, of both stem cell therapies and cell-based immunotherapies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Célula , Microfluídica/métodos , Reproducibilidad de los Resultados
15.
Eng Life Sci ; 22(12): 803-810, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514535

RESUMEN

The Australian tobacco plant Nicotiana benthamiana is becoming increasingly popular as a platform for protein production and metabolic engineering. In this system, gene expression is achieved transiently by infiltrating N. benthamiana plants with suspensions of Agrobacterium tumefaciens carrying vectors with the target genes. To infiltrate larger numbers of plants, vacuum infiltration is the most efficient approach known, which is already used on industrial scale. Current laboratory-scale solutions for vacuum infiltration, however, either require expensive custom-tailored equipment or produce large amounts of biologically contaminated waste. To overcome these problems and lower the burden to establish vacuum infiltration in new laboratories, we present here 3D-printed plant holders for vacuum infiltration. We demonstrate that our plant holders are simple to use and enable a throughput of around 40 plants per hour. In addition, our 3D-printed plant holders are made from autoclavable material, which tolerate at least 12 autoclave cycles, helping to limit the production of contaminated waste and thus contributing to increased sustainability in research. In conclusion, our plant holders provide a simple, robust, safe and transparent platform for laboratory-scale vacuum infiltration that can be readily adopted by new laboratories interested in protein and metabolite production in Nicotiana benthamiana. Practical application Transient expression in Nicotiana benthamiana provides a popular and rapid system for producing proteins in a plant host. To infiltrate larger numbers of plants (typically >20), vacuum infiltration is the method of choice. However, no system has been described so far which is robust to use and can be used without expensive and complex equipment. Our autoclavable 3D-printed plant holders presented here will greatly reduce the efforts required to adopt the vacuum infiltration technique in new laboratories. They are easy to use and can be autoclaved at least 12 times, which contributes to waste reduction and sustainability in research laboratories. We anticipate that the 3D printing design provided here will drastically lower the bar for new groups to employ vacuum infiltration for producing proteins and metabolites in Nicotiana benthamiana.

16.
Eng Life Sci ; 22(12): 744-759, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514534

RESUMEN

Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems-which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D-printed objects in biotechnology-ranging from miniaturized cultivation chambers to microfluidic lab-on-a-chip devices for diagnostics-are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors.

17.
Lab Chip ; 22(23): 4656-4665, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342331

RESUMEN

Microfluidic valve systems show great potential to automate mixing, dilution, and time-resolved reagent supply within biochemical assays and novel on-chip cell culture systems. However, most of these systems require a complex and cost-intensive fabrication in clean room facilities, and the valve control element itself also requires vacuum or pressure sources (including external valves, tubing, ports and pneumatic control channels). Addressing these bottlenecks, the herein presented biocompatible and heat steam sterilizable microfluidic valve system was fabricated via high-resolution 3D printing in a one-step process - including inlets, micromixer, microvalves, and outlets. The 3D-printed valve membrane is deflected via miniature on-chip servomotors that are controlled using a Raspberry Pi and a customized Python script (resulting in a device that is comparatively low-cost, portable, and fully automated). While a high mixing accuracy and long-term robustness is established, as described herein the system is further applied in a proof-of-concept assay for automated IC50 determination of camptothecin with mouse fibroblasts (L929) monitored by a live-cell-imaging system. Measurements of cell growth and IC50 values revealed no difference in performance between the microfluidic valve system and traditional pipetting. This novel design and the accompanying automatization scripts provide the scientific community with direct access to customizable full-time reagent control of 2D cell culture, or even novel organ-on-a-chip systems.


Asunto(s)
Microfluídica , Impresión Tridimensional , Ratones , Animales , Dispositivos Laboratorio en un Chip , Automatización , Técnicas de Cultivo de Célula
18.
Cells ; 11(11)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681457

RESUMEN

Hyperosmolality can occur during industrial fed-batch cultivation processes of Chinese hamster ovary (CHO) cells as highly concentrated feed and base solutions are added to replenish nutrients and regulate pH values. Some effects of hyperosmolality, such as increased cell size and growth inhibition, have been elucidated by previous research, but the impact of hyperosmolality and the specific effects of the added osmotic-active reagents have rarely been disentangled. In this study, CHO cells were exposed to four osmotic conditions between 300 mOsm/kg (physiologic condition) and 530 mOsm/kg (extreme hyperosmolality) caused by the addition of either high-glucose-supplemented industrial feed or mannitol as an osmotic control. We present novel single-cell cultivation data revealing heterogeneity in mass gain and cell division in response to these treatments. Exposure to extreme mannitol-induced hyperosmolality and to high-glucose-oversupplemented feed causes cell cycle termination, mtDNA damage, and mitochondrial membrane depolarization, which hints at the onset of premature stress-induced senescence. Thus, this study shows that both mannitol-induced hyperosmolality (530 mOsm/kg) and glucose overfeeding induce severe negative effects on cell growth and mitochondrial activity; therefore, they need to be considered during process development for commercial production.


Asunto(s)
Glucosa , Análisis de la Célula Individual , Animales , Células CHO , Cricetinae , Cricetulus , Glucosa/metabolismo , Manitol/farmacología
19.
Lab Chip ; 22(5): 986-993, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107475

RESUMEN

Modern 3D printers enable not only rapid prototyping, but also high-precision printing-microfluidic devices with channel diameters of just a few micrometres can now be readily assembled using this technology. Such devices offer a myriad of benefits (including miniaturization) that significantly reduce sample and buffer volumes and lead to lower process costs. Although such microfluidic devices are already widely used in the field of biotechnology, there is a lack of research regarding the potential of miniaturization by 3D-printed devices in lab-scale chromatography. In this study, the efficacy of a 3D-printed microfluidic device which provides a substantially lower dead-volume compared to established chromatography systems is demonstrated for batch purification applications. Furthermore, this device enables straightforward integration of various components (such as microfluidic valves and chromatographic units) in an unprecedentedly flexible fashion. Initial proof-of-concept experiments demonstrate successful gradient elution with bovine serum albumin (BSA), and the purification of a pharmaceutically relevant IgG monoclonal antibody (mAb).


Asunto(s)
Dispositivos Laboratorio en un Chip , Impresión Tridimensional , Cromatografía , Microfluídica , Miniaturización
20.
Eng Life Sci ; 22(11): 699-708, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348657

RESUMEN

Additive manufacturing (3D printing) enables the fabrication of highly customized and complex devices and is therefore increasingly used in the field of life sciences and biotechnology. However, the application of 3D-printed parts in these fields requires not only their biocompatibility but also their sterility. The most common method for sterilizing 3D-printed parts is heat steam sterilization-but most commercially available 3D printing materials cannot withstand high temperatures. In this study, a novel heat-resistant polyacrylate material for high-resolution 3D Multijet printing was evaluated for the first time for its resistance to heat steam sterilization and in vitro biocompatibility with mouse fibroblasts (L929), human embryonic kidney cells (HEK 293E), and yeast (Saccharomyces cerevisiae (S. cerevisiae)). Analysis of the growth and viability of L929 cells and the growth of S. cerevisiae confirmed that the extraction media obtained from 3D-printed parts had no negative effect on the aforementioned cell types, while, in contrast, viability and growth of HEK 293E cells were affected. No different effects of the material on the cells were found when comparing heat steam sterilization and disinfection with ethanol (70%, v/v). In principle, the investigated material shows great potential for high-resolution 3D printing of novel cell culture systems that are highly complex in design, customized and easily sterilizable-however, the biocompatibility of the material for other cell types needs to be re-evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA