Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 81(1): 410, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305343

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.


Asunto(s)
Encéfalo , Vesículas Extracelulares , Proteína 2 de Unión a Metil-CpG , MicroARNs , Organoides , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Organoides/metabolismo , Organoides/patología , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mutación , Prosencéfalo/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012444

RESUMEN

Vascular calcification (VC) is the pathological precipitation of calcium salts in the walls of blood vessels. It is a risk factor for cardiovascular events and their associated mortality. VC can be observed in a variety of cardiovascular diseases and is most prominent in diseases that are associated with dysregulated mineral homeostasis such as in chronic kidney disease. Local factors and mechanisms underlying VC are still incompletely understood, but it is appreciated that VC is a multifactorial process in which vascular smooth muscle cells (VSMCs) play an important role. VSMCs participate in VC by releasing extracellular vesicles (EVs), the extent, composition, and propensity to calcify of which depend on VSMC phenotype and microenvironment. Currently, no targeted therapy is available to treat VC. In-depth knowledge of molecular players of EV release and the understanding of their mechanisms constitute a vital foundation for the design of pharmacological treatments to combat VC effectively. This review highlights our current knowledge of VSMCs in VC and focuses on the biogenesis of exosomes and the role of the neutral Sphingomyelinase 2 (nSMase2).


Asunto(s)
Exosomas , Calcificación Vascular , Exosomas/patología , Humanos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Esfingomielina Fosfodiesterasa , Calcificación Vascular/genética
3.
Sci Rep ; 14(1): 14666, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918466

RESUMEN

Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.


Asunto(s)
Histona Desacetilasa 6 , Mapas de Interacción de Proteínas , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Fosforilación , Acetilación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
4.
Prog Neurobiol ; 205: 102124, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314775

RESUMEN

With a diverse set of neuronal and glial cell populations, Central Nervous System (CNS) has one of the most complex structures in the body. Intercellular communication is therefore highly important to coordinate cell-to-cell interactions. Besides electrical and chemical messengers, CNS cells also benefit from another communication route, what is known as extracellular vesicles, to harmonize their interactions. Extracellular Vesicles (EVs) and their subtype exosomes are membranous particles secreted by cells and contain information packaged in the form of biomolecules such as small fragments of DNA, lipids, miRNAs, mRNAs, and proteins. They are able to efficiently drive changes upon their arrival to recipient cells. EVs actively participate in all stages of CNS development by stimulating neural cell proliferation, differentiation, synaptic formation, and mediating reciprocal interactions between neurons and oligodendrocyte for myelination process. The aim of the present review is to enlighten the presence and contribution of EVs at each CNS developmental milestone.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Sistema Nervioso Central , Exosomas , Neuronas
5.
World J Biol Psychiatry ; 21(10): 712-725, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-30907210

RESUMEN

OBJECTIVES: Rett syndrome (RTT) is a rare disorder causing severe intellectual and physical disability. The cause is a mutation in the gene coding for the methyl-CpG binding protein 2 (MECP2), a multifunctional regulator protein. Purpose of the study was integration and investigation of multiple gene expression profiles in human cells with impaired MECP2 gene to obtain a robust, data-driven insight in molecular disease mechanisms. METHODS: Information about changed gene expression was extracted from five previously published studies, integrated and the resulting differentially expressed genes were analysed using overrepresentation analysis of biological pathways and gene ontology, and network analysis. RESULTS: We identified a set of genes, which are significantly changed not in all but several transcriptomics datasets and were not mentioned in the context of RTT before. We found that these genes are involved in several processes and molecular pathways known to be affected in RTT. Integrating transcription factors we identified a possible link how MECP2 regulates cytoskeleton organisation via MEF2C and CAPG. CONCLUSIONS: Integrative analysis of omics data and prior knowledge databases is a powerful approach to identify links between mutation and phenotype especially in rare disease research where little data is available.


Asunto(s)
Síndrome de Rett , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Fenotipo , Síndrome de Rett/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA