Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222573

RESUMEN

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Productos Agrícolas , Carbono , Sequías
2.
Physiol Plant ; 176(1): e14209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348703

RESUMEN

Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.


Asunto(s)
Oryza , Humanos , Oryza/fisiología , Especies Reactivas de Oxígeno , Fotosíntesis/fisiología , Clorofila , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo
3.
Theor Appl Genet ; 135(11): 4065-4081, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35713657

RESUMEN

Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.


Asunto(s)
Oryza , Humanos , Oryza/genética , Genómica , Estrés Fisiológico
4.
Plant Physiol ; 174(4): 2302-2315, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28600346

RESUMEN

Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress.


Asunto(s)
Oryza/anatomía & histología , Oryza/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Agua , Mapeo Cromosómico , Sitios Genéticos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genotipo , Modelos Lineales , Desequilibrio de Ligamiento/genética , Fenotipo , Análisis de Componente Principal , Carácter Cuantitativo Heredable
5.
Physiol Plant ; 159(1): 59-73, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27513992

RESUMEN

High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios.


Asunto(s)
Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Biomasa , Respiración de la Célula , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Glucosiltransferasas/metabolismo , Calor , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Almidón Sintasa/metabolismo , beta-Fructofuranosidasa/metabolismo
6.
Physiol Plant ; 154(4): 543-59, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25302555

RESUMEN

The predicted increase in the frequency and magnitude of extreme heat spikes under future climate can reduce rice yields significantly. Rice sensitivity to high temperatures during the reproductive stage is well documented while the same during the vegetative stage is more speculative. Hence, to identify and characterize novel heat-tolerant donors for both the vegetative and reproductive stages, 71 rice accessions, including approximately 75% New Rice for Africa (NERICAs), were phenotyped across field experiments during summer seasons in Delhi, India, and in a controlled environment study at International Rice Research Institute, Philippines. NERICA-L-44 (NL-44) recorded high seedling survival (52%) and superior growth and greater reproductive success exposed to 42.2°C (sd ± 2.3) under field conditions. NL-44 and the heat-tolerant check N22 consistently displayed lower membrane damage and higher antioxidant enzymes activity across leaves and spikelets. NL-44 recorded 50-60% spikelet fertility, while N22 recorded 67-79% under controlled environment temperature of 38°C (sd±1.17), although both had about 87% fertility under extremely hot field conditions. N22 and NL-44, exposed to heat stress (38°C), had similar pollen germination percent and number of pollen tubes reaching the ovary. NL-44 maintained low hydrogen peroxide production and non-photochemical quenching (NPQ) with high photosynthesis while N22 avoided photosystem II damage through high NPQ under high-temperature stress. NL-44 with its reproductive stage resilience to extreme heat stress, better antioxidant scavenging ability in both vegetative tissue and spikelets and superior yield and grain quality is identified as a novel donor for increasing heat tolerance at both the vegetative and reproductive stages in rice.


Asunto(s)
Adaptación Fisiológica , Calor , Oryza/fisiología , Proteínas de Plantas/fisiología , Antioxidantes/metabolismo , Clorofila/metabolismo , Flores/crecimiento & desarrollo , Estrés Oxidativo , Reproducción
7.
Sci Rep ; 7(1): 8227, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811489

RESUMEN

Elevated [CO2] (e[CO2]) environments have been predicted to improve rice yields under future climate. However, a concomitant rise in temperature could negate e[CO2] impact on plants, presenting a serious challenge for crop improvement. High temperature (HT) stress tolerant NL-44 and high yielding basmati Pusa 1121 rice cultivars, were exposed to e[CO2] (from panicle initiation to maturity) and a combination of e[CO2] + HT (from heading to maturity) using field based open top chambers. Elevated [CO2] significantly increased photosynthesis, seed-set, panicle weight and grain weight across both cultivars, more prominently with Pusa 1121. Conversely, e[CO2] + HT during flowering and early grain filling significantly reduced seed-set and 1000 grain weight, respectively. Averaged across both the cultivars, grain yield was reduced by 18 to 29%. Despite highly positive response with e[CO2], Pusa 1121 exposure to e[CO2] + HT led to significant reduction in seed-set and sink starch metabolism enzymatic activity. Interestingly, NL-44 maintained higher seed-set and resilience with starch metabolism enzymes under e[CO2] + HT exposure. Developing rice cultivars with higher [CO2] responsiveness incorporated with increased tolerance to high temperatures during flowering and grain filling using donors such as NL-44, will minimize the negative impact of heat stress and increase global food productivity, benefiting from [CO2] rich environments.


Asunto(s)
Dióxido de Carbono/metabolismo , Flores , Respuesta al Choque Térmico , Oryza/fisiología , Semillas , Metabolismo de los Hidratos de Carbono , Grano Comestible/fisiología , Ambiente , Enzimas/metabolismo
8.
Front Plant Sci ; 7: 913, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446143

RESUMEN

Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation.

9.
Front Plant Sci ; 6: 1070, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648957

RESUMEN

Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA