RESUMEN
BACKGROUND: In December 2019, a pneumonia caused by SARS-CoV-2 emerged in Wuhan, China and has rapidly spread around the world since then. This study is to explore the patient characteristics and transmission chains of COVID-19 in the population of Gansu province, and support decision-making. METHODS: We collected data from Gansu Province National Health Information Platform. A cross-sectional study was conducted, including patients with COVID-19 confirmed between January 23 and February 6, 2020, and analyzed the gender and age of the patients. We also described the incubation period, consultation time and sources of infection in the cases, and calculated the secondary cases that occurred within Gansu for each imported case. RESULTS: We found thirty-six (53.7%) of the patients were women and thirty-one (46.3%) men, and the median ages were 40 (IQR 31-53) years. Twenty-eight (41.8%) of the 67 cases had a history of direct exposure in Wuhan. Twenty-five (52.2%) cases came from ten families, and we found no clear reports of modes of transmission other than family clusters. The largest number of secondary cases linked to a single source was nine. CONCLUSION: More women than men were diagnosed with COVID-19 in Gansu Province. Although the age range of confirmed cases of COVID-19 in Gansu Province covered almost all age groups, most patients with confirmed COVID-19 tend to be middle aged persons. The most common suspected mode of transmission was through family cluster. Gansu and other settings worldwide should continue to strengthen the utilization of big data in epidemic control.
Asunto(s)
Macrodatos , COVID-19/epidemiología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etiología , Niño , Preescolar , China/epidemiología , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores Sexuales , Adulto JovenRESUMEN
Ginsenoside Rh2 is one of the most important ginsenosides in ginseng with anti-inflammatory and antitumor effects. However, the extremely poor oral bioavailability induced by its low water solubility greatly limits the potency of Rh2 in vivo. In the previous study, we sulfated 20(S)-ginsenoside Rh2 with chlorosulfonic acid and pyridine method, and got one novel derivative, Rh2-B1, with higher water solubility and greater immunologic enhancement than Rh2. However, the anti-inflammatory effect of Rh2-B1 remains unclear. We therefore investigated the effects of Rh2-B1 on lipopolysaccharide (LPS)-induced proinflammatory mediators in RAW 264.7 macrophages. We found that Rh2-B1 dramatically inhibited LPS-induced overproduction of nitric oxide, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. Consistently, the protein and mRNA expression levels of inducible nitric oxide synthase and cyclooxygenase-2 were remarkably decreased by Rh2-B1. In addition, Rh2-B1 significantly suppressed the phosphorylations of p38, c-Jun N-terminal kinase, and extracellular signal receptor-activated kinase 1/2 induced by LPS. Rh2-B1 was further shown to inhibit NF-κB p65 translocation into the nucleus by suppressing IκBα degradation. In conclusion, we demonstrate that Rh2-B1 inhibits the release of LPS-induced pro-inflammatory mediators through blocking mitogen-activated protein kinases and NF-κB signaling pathways, suggesting that sulfated ginsenosides could be potential agents for anti-inflammatory therapies.