Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056179

RESUMEN

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Asunto(s)
Macrófagos , Muramidasa , Obesidad , Receptores CCR2 , Animales , Obesidad/complicaciones , Obesidad/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Ratones , Muramidasa/metabolismo , Muramidasa/genética , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Transducción de Señal , Inflamación/metabolismo , Inflamación/genética , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/genética
2.
BMC Plant Biol ; 24(1): 49, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216904

RESUMEN

BACKGROUND: Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS: High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS: From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.


Asunto(s)
Dalbergia , Humanos , Dalbergia/metabolismo , Salinidad , Plantas/metabolismo , Antioxidantes/metabolismo , Fotosíntesis
3.
Phys Chem Chem Phys ; 26(30): 20470-20482, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39027937

RESUMEN

Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.

4.
Zhonghua Nan Ke Xue ; 29(9): 846-850, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-38639600

RESUMEN

OBJECTIVE: To study the clinical therapeutic effect as well as drug effectiveness and safety of Shizi Sanhua decoction combined with Nuoyu in the treatment of oligozoospermia in men. METHODS: 102 patients with oligozoospermia diagnosed at Longhua Hospital of Shanghai University of Traditional Chinese Medicine from February 2022 to March 2023 were selected and randomly divided into 3 groups. The treatment group was treated with Shizi Sanhua Decoction + Nuoyu; the traditional Chinese medicine group was treated with Shizi Sanhua Decoction; and the Nuoyu nutrient group was treated with Nuoyu nutrient. A review assessment and record were made after one course of treatment (3 months). RESULTS: A total of 102 patients completed the trial due to the treatment process. There were 34 cases in each of the traditional Chinese medicine group, the Nuoyu nutrient group, and the treatment group. Clinical efficacy: total effective rate of 52.94% in the traditional Chinese medicine group; 58.82% in the Nuoyu nutrient group; 82.35% in the treatment group. The clinical efficacy of the treatment group was better than that of the traditional Chinese medicine group and the Nuoyu nutrient group (P<0.05), which was statistically significant. Semen routine: the treatment group was better than the traditional Chinese medicine group and Nuoyu nutrient group in improving the total number of sperm and sperm concentration. CONCLUSION: The semen concentration and forward sperm count of patients with oligozoospermia treated with Shizi Sanhua Decoction combined with Nuoyu improved more significantly, and the clinical efficacy was remarkable. And the clinical efficacy is not affected by age and disease duration. It can be popularized and applied as a treatment for oligozoospermia.


Asunto(s)
Medicamentos Herbarios Chinos , Oligospermia , Humanos , Masculino , Medicamentos Herbarios Chinos/uso terapéutico , Oligospermia/tratamiento farmacológico , Oligospermia/inducido químicamente , Semen , China , Medicina Tradicional China
5.
J Pers Soc Psychol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990681

RESUMEN

How different racial minorities experience racism differently remains underexplored in existing research. Here, we show that Asian and Black people are often dehumanized differently. Twelve studies spotlight a racial asymmetry in dehumanization using a wide array of methods (experimental, archival, and computational) and data sources (online samples, word embeddings, and U.S. Bureau of Labor Statistics data): Whereas Black people are more often subjected to animalistic dehumanization, Asian people are predominantly subjected to mechanistic dehumanization. We demonstrate this asymmetry from the vantage point of victims (Studies 1a and 1b) and perpetrators (Studies 2a-2d). We further document the prevalence of this asymmetry across diverse domains, from everyday language (Study 3) to perceptions in the realms of romantic relationships (Study 4a), crime rates (Study 4b), and business skills (Study 4c). Finally, we demonstrate the asymmetry's real-world consequences in labor market segregation (Studies 5 and 6). Our findings shed light on the distinct experiences of racism encountered by different racial groups and, more critically, introduce a framework that unifies and integrates scattered empirical observations on perceptions of Asian people. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

6.
J Health Popul Nutr ; 43(1): 39, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449053

RESUMEN

Bacterial drug resistance monitoring in hospitals is a crucial aspect of healthcare management and a growing concern worldwide. In this study, we analysed the bacterial drug resistance surveillance in our hospital from 2022 Q1 to 2023 Q2. The main sampling sources were respiratory, blood, and urine-based, and the main clinical infections were respiratory and genitourinary in nature. Specimens were inoculated and cultured; bacterial strains were isolated using a VITEK® 2 Compact 60-card automatic microorganism identifier (bioMerieux, Paris, France) and their matching identification cards were identified, and manual tests were supplemented for strain identification. The most common Gram-positive bacteria detected were Staphylococcus aureus, followed by Enterococcus faecalis (E. faecalis), Staphylococcus epidermidis (S. epidermidis), and Staphylococcus haemolyticus (S. haemolyticus). The most common Gram-negative bacteria detected were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most prevalent multidrug-resistant bacteria were those producing extended-spectrum beta-lactamases, followed by methicillin-resistant Staphylococcus aureus, followed by carbapenem-resistant Enterobacterales. This study suggests that the prevention and control of infections in the respiratory and genitourinary systems should be the focus of anti-infective work and that the use of antimicrobials should be reduced and regulated to prevent the emergence and spread of resistant bacteria.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Departamentos de Hospitales , China/epidemiología , Escherichia coli
7.
Sci Adv ; 10(17): eado0225, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669332

RESUMEN

Ketones are ubiquitous in bioactive natural products, pharmaceuticals, chemical feedstocks, and synthetic intermediates. Hence, deacylative coupling reactions enable the versatile elaboration of a plethora of chemicals to access complex drug candidates and natural products. Here, we present deacylative arylation and alkynylation strategies for the synthesis of a wide range of alkyl-tethered arenes and alkynes from cyclic ketones and methyl ketones under dual nickel/photoredox catalysis. This reaction begins by generating a pre-aromatic intermediate (PAI) through the condensation of the ketone and N'-methylpicolino-hydrazonamide (MPHA), followed by the oxidative cleavage of the PAI α-C─C bond to form an alkyl radical, which is subsequently intercepted by a Ni complex, facilitating the formation of diverse C(sp3)-C(sp2)/C(sp) bonds with remarkable generality. This protocol features a one-pot reaction capability, high regioselectivity and ring-opening efficiency, mild reaction conditions, and a broad substrate scope with excellent functional group compatibility.

8.
J Chromatogr Sci ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803160

RESUMEN

With the widespread application of mixed-mode chromatography in separation analysis, it is becoming increasingly important to study its retention mechanism. The retention behavior of acidic compounds on mixed-mode octyl-quaternary ammonium (Sil-C8-QA) columns was investigated by computer simulation. Firstly, the benzoic acid homologues were used as the analytes, and the simulation model was constructed by the Materials Studio. Geometric optimization, annealing and molecular dynamics (MD) simulation of these complexes resulted in optimized conformations. The binding energy, mean square displacement (MSD) and torsion angle distribution generated by MD simulation were then analyzed. The results showed that the more negative binding energy, the greater the MSD and the narrower the torsion angle distribution, indicating that the stationary phase behaves with stronger interaction and retention. The retention behavior of five acidic drugs on the Sil-C8-QA column was then successfully explained by simulation. Acidic drugs are more retentive on the mixed-mode column due to the more substantial interaction brought by the reversed-phase/ion-exchange mixed-mode mechanism compared to other single-mode columns. This simulation method is expected to provide ideas for studying the separation mechanism and predicting the retention behavior of more complex samples.

9.
ACS Appl Mater Interfaces ; 16(12): 15525-15532, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38482605

RESUMEN

The ion-conductive α-Cu2Se is found to possess antipolar dipoles, and the movement of the domain boundary under the applied voltage causes change of resistance, showing promising application in memristors. However, due to the complex ordering of Cu ions in the α-Cu2Se, there are multiple types of domain wall structure. Here, we show that two typical domain walls in α-Cu2Se can be formed, by controlling the voltage during phase transition from high-temperature cubic ß-Cu2Se to α-Cu2Se. We also show by in situ transmission electron microscopy that the formed [01̅0]/[101̅] domain wall performs a reversible movement under the applied external voltage, while the [010]/[01̅0] domain wall does not move. We further demonstrate that pinning of the [010]/[01̅0] domain wall could be due to the formed dislocations in the interface. This study shows that applying preprocess conditions is important to obtain the designed microstructure and resistive properties of α-Cu2Se.

10.
Epigenomics ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511238

RESUMEN

Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.

11.
Phytomedicine ; 130: 155753, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795693

RESUMEN

BACKGROUND: Meningeal lymphatic vessels (mLVs) have great potential to be the therapeutic target for ß Amyloid protein (Aß) clearing in Alzheimer's disease (AD), but the regulatory methods of the mLVs are limited. The lymphatic valve, marked by FOXC2, is the fundamental structure for maintaining stable lymphatic drainage function. Preliminary evidence suggested that borneol (BO) as the classical phytochemicals could enhance the expression of FOXC2 in the mLVs of healthy mice. PURPOSE: This study aims to explore the regulatory ability of BO on lymphatic valves of mLVs in the AD model mice. STUDY DESIGN: We used the intracerebroventricular injection of Aß42 oligomers to construct the AD-like symptoms model induced by toxic protein deposition. We administered BO nano micelles(BO-Ms) orally before and after to simulate the AD prevention and treatment strategy. METHODS: Herein, this study characterized the efficacy and pathways of BO-Ms for regulating mLVs in AD model by Rt-PCR, WB and confocal microscopy, and determined the effects of BO-Ms on Aß clearance, behavior and safety of AD mice. RESULTS: The AD modeling process severely impaired the expression of lymphatic valves. However, after oral administering BO-Ms for prevention and treatment, an increase in the lymphatic valves of the transverse sinus was observed, which derived from the up-regulation of the transcription factor (FOXC2 and Akt) and the down-regulation of the transcription inhibitors (FOXO1 and PRDM1). Furthermore, the effects of BO-Ms on the lymphatic valves could enhance the lymphatic drainage of the mLVs in AD-like mice, promoting the clearance of toxicity aggregates, protecting neurons, and alleviating AD-like symptoms. Simultaneously, continuous oral BO-Ms for 30 days didn't show any significant organ toxicity. The most important thing was that the preventive effect of BO administration was superior to therapeutic administration in all data. CONCLUSION: In summary, our research indicated that BO is a promoter of lymphatic valve formation in the mLVs, and could prevent or repair damage caused by toxic Aß42. BO was the only bioactive natural product with the ability to regulate mLVs valves. Thus, BO has the potential to become phytochemicals for alleviating AD symptoms by enhancing the drainage function of mLVs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Canfanos , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Canfanos/farmacología , Factores de Transcripción Forkhead/metabolismo , Masculino , Vasos Linfáticos/efectos de los fármacos , Meninges/efectos de los fármacos , Ratones Endogámicos C57BL
12.
Comput Biol Med ; 169: 107884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154158

RESUMEN

Overall cancer hypomethylation had been identified in the past, but it is not clear exactly which hypomethylation site is the more important for the occurrence of cancer. To identify key hypomethylation sites, we studied the effect of hypomethylation in twelve regions on gene expression in colon adenocarcinoma (COAD). The key DNA methylation sites of cg18949415, cg22193385 and important genes of C6orf223, KRT7 were found by constructing a prognostic model, survival analysis and random combination prediction a series of in-depth systematic calculations and analyses, and the results were validated by GEO database, immune microenvironment, drug and functional enrichment analysis. Based on the expression values of C6orf223, KRT7 genes and the DNA methylation values of cg18949415, cg22193385 sites, the least diversity increment algorithm were used to predict COAD and normal sample. The 100 % reliability and 97.12 % correctness of predicting tumor samples were obtained in jackknife test. Moreover, we found that C6orf223 gene, cg18949415 site play a more important role than KRT7 gene, cg22193385 site in COAD. In addition, we investigate the impact of key methylation sites on three-dimensional chromatin structure. Our results will be help for experimental studies and may be an epigenetic biomarker for COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Metilación de ADN , Reproducibilidad de los Resultados , Biomarcadores , Microambiente Tumoral
13.
Int J Cardiol ; : 132360, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111372

RESUMEN

BACKGROUND: Vector flow mapping (VFM) is a new echocardiographic technology that can effectively evaluate systolic and diastolic hemodynamic function. However, little is known about the prognostic value of VFM-related parameters. In this paper we aimed to investigate whether left ventricular energy loss (EL) parameters as assessed by VFM enhance prediction of adverse events in patients with chronic kidney disease with preserved ejection fraction. METHODS: One hundred thirty-nine prospectively recruited patients (66% male, 58% on dialysis) with CKD stage 3-5 with normal left ventricular ejection fraction (LVEF) made up the study cohort. Global longitudinal strain (GLS) was calculated using 2-dimensional speckle tracking, and the LV EL during one cardiac cycle for each period was measured using VFM technology. Participants were followed for 4.17 ±â€¯1.58 years for the primary end point of overall mortality and major adverse cardiovascular events (MACE). RESULTS: Forty-five (32%) patients had a primary endpoint event. The EL during each period especially during the ejection stage (Ej-EL) was significantly higher in patients with adverse events than in those without, meanwhile the LV GLS were lower. The Ej-EL (HR: 1.11; 95% CI: 1.06-1.15) and LV GLS (HR: 0.87; 95% CI: 0.81-0.94) (all P < .001) were independent predictors for the primary end point. Increased Ej-EL (≥6.13, 10-3 J/m s) and impaired GLS (<15.52, %) were associated with a higher risk of overall mortality death and MACE (log rank χ2 = 26.94, 7.19; P < .001, =0.007), and DeLong tests showed that Ej-EL (AUC = 0.823) has a slight advantage in predicting adverse events compared to GLS (AUC = 0.681). Furthermore, the addition of Ej-EL to a model with conventional parameters did more to improve the model's discrimination compared to GLS. CONCLUSIONS: Increased Ej-EL as determined by VFM is associated with a higher risk of overall death and MACE in CKD patients with preserved EF.

14.
RSC Adv ; 14(14): 10056-10069, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38544736

RESUMEN

The requirement for the removal of phosphorus (P) from wastewater has become progressively stringent, therefore, it is essential to remove low-concentration phosphate from secondary effluents through a tertiary treatment. One of the biggest challenges in removing phosphate from wastewater is the development of low-cost, green, and pollution-free adsorbents. In this study, novel, eco-friendly and low-cost CeO2 nanosphere modifying CoAl-LDH nanosheets (CoAl-LDH/CeO2) were successfully fabricated using a classical hydrothermal strategy. The microstructure and morphology of CoAl LDH/CeO2 were characterized using SEM, TEM, FTIR, XRD, TG, XPS, and BET techniques. The performance of the P adsorption from water for CoAl-LDH/CeO2 was investigated. The influences of adsorption parameters, such as adsorbent dosage, pH, phosphate concentration, adsorption time, and experimental temperature, were investigated through batch adsorption experiments. The batch adsorption experiments showed that the P removal by CoAl-LDH/CeO2 could reach 93.4% at room temperature within 60 minutes. CoAl-LDH/CeO2 showed ultrafast and high-efficiency adsorption for low concentration P contaminated wastewater. Pseudo-second order model exhibited better fitting with the kinetics of the phosphate adsorption, while the Freundlich model well-described the isotherm results (R2 > 0.999). Although Cl-, NO3-and SO42- coexisted in the solution, CoAl-LDH/CeO2 still possessed favourable selectivity for phosphates. More importantly, the adsorption capacities of CoAl-LDH/CeO2 retained over 85% after five cycles. Therefore, the low cost and sustainable utilization of CoAl-LDH/CeO2 for the phosphate removal from secondary effluent with phosphate at a low concentration highlights its potential application to alleviate eutrophication.

15.
Database (Oxford) ; 20242024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613826

RESUMEN

The discovery of key epigenetic modifications in cancer is of great significance for the study of disease biomarkers. Through the mining of epigenetic modification data relevant to cancer, some researches on epigenetic modifications are accumulating. In order to make it easier to integrate the effects of key epigenetic modifications on the related cancers, we established CancerMHL (http://www.positionprediction.cn/), which provide key DNA methylation, histone modifications and lncRNAs as well as the effect of these key epigenetic modifications on gene expression in several cancers. To facilitate data retrieval, CancerMHL offers flexible query options and filters, allowing users to access specific key epigenetic modifications according to their own needs. In addition, based on the epigenetic modification data, three online prediction tools had been offered in CancerMHL for users. CancerMHL will be a useful resource platform for further exploring novel and potential biomarkers and therapeutic targets in cancer. Database URL: http://www.positionprediction.cn/.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , Código de Histonas , ARN Largo no Codificante/genética , Metilación de ADN/genética , Neoplasias/genética , Biomarcadores
16.
ACS Appl Mater Interfaces ; 16(1): 1148-1157, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38163297

RESUMEN

Ag2TexS1-x usually undergo various phase structures upon heating or cooling processes; however, the correlation between the heat treatment, the phase structure, and the physical properties is still a controversy. Herein, three different phases are realized for Ag2TexS1-x (0.35 ≤ x ≤ 0.65) samples during the heat treatment, including the low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase. The metastable amorphous phase is an intermediate phase formed during transition from the high-temperature cubic phase to the low-temperature crystalline phase upon cooling via a solid-state conversion rather than the conventional liquid quenching process. The relative content of these three phases is highly sensitive to the heat treatment process. This as-formed low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase convert into the low-temperature crystalline phase and high-temperature cubic phase through long-time dwelling at the temperature below or above the transition temperature around 567 K, respectively. The status of the low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase significantly affects the thermoelectric properties, resulting in the thermal hysteresis of thermoelectric properties. Below the phase transition temperature (TM), the electrical conductivity of the amorphous phase surpasses that of the low-temperature crystalline phase, which shows a growth of 112% for the Ag2Te0.60S0.40 sample annealed at 823 K in comparison with that of the sample annealed at 473 K. For Ag2Te0.50S0.50 samples annealed at 473 K, the maximum ZT value reaches 1.02 at 623 K during the initial test, while the maximum ZT value is improved to 1.34 at 523 K in the second-round test.

17.
World J Psychiatry ; 14(6): 920-929, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38984330

RESUMEN

BACKGROUND: There is an increasingly strong demand for appearance and physical beauty in social life, marriage, and other aspects with the development of society and the improvement of material living standards. An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery. The female breast plays a significant role in physical beauty, and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women. This, in turn, can affect their mental health and quality of life. AIM: To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability. METHODS: We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method. The general information, self-image pressure level, and social adaptability of the patients were investigated using a basic information survey, body image self-assessment scale, and social adaptability scale. The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed. RESULTS: We collected 142 valid questionnaires. The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages, marital status, and monthly income. However, there were significant differences in social adaptability among patients with different education levels and employment statuses. The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery. Multiple factors analysis results showed that the degree of concern caused by appearance in self-image pressure, the degree of possible behavioral intervention, the related distress caused by body image, and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients. CONCLUSION: The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.

18.
Neuropharmacology ; 249: 109893, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428482

RESUMEN

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Asunto(s)
Cannabidiol , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Dopamina/farmacología , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens , Dolor , Receptores de Dopamina D1/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Ratones Transgénicos
19.
J Immunother Cancer ; 12(1)2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38199610

RESUMEN

BACKGROUND: As an unconventional subpopulation of T lymphocytes, γδ T cells can recognize antigens independently of major histocompatibility complex restrictions. Recent studies have indicated that γδ T cells play contrasting roles in tumor microenvironments-promoting tumor progression in some cancers (eg, gallbladder and leukemia) while suppressing it in others (eg, lung and gastric). γδ T cells are mainly enriched in peripheral mucosal tissues. As the cervix is a mucosa-rich tissue, the role of γδ T cells in cervical cancer warrants further investigation. METHODS: We employed a multiomics strategy that integrated abundant data from single-cell and bulk transcriptome sequencing, whole exome sequencing, genotyping array, immunohistochemistry, and MRI. RESULTS: Heterogeneity was observed in the level of γδ T-cell infiltration in cervical cancer tissues, mainly associated with the tumor somatic mutational landscape. Definitely, γδ T cells play a beneficial role in the prognosis of patients with cervical cancer. First, γδ T cells exert direct cytotoxic effects in the tumor microenvironment of cervical cancer through the dynamic evolution of cellular states at both poles. Second, higher levels of γδ T-cell infiltration also shape the microenvironment of immune activation with cancer-suppressive properties. We found that these intricate features can be observed by MRI-based radiomics models to non-invasively assess γδ T-cell proportions in tumor tissues in patients. Importantly, patients with high infiltration levels of γδ T cells may be more amenable to immunotherapies including immune checkpoint inhibitors and autologous tumor-infiltrating lymphocyte therapies, than to chemoradiotherapy. CONCLUSIONS: γδ T cells play a beneficial role in antitumor immunity in cervical cancer. The abundance of γδ T cells in cervical cancerous tissue is associated with higher response rates to immunotherapy.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/terapia , Microambiente Tumoral , Multiómica , Inmunoterapia , Pronóstico
20.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773142

RESUMEN

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Modelos Animales de Enfermedad , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM , Macrófagos , Sepsis , Animales , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Fosforilación , Humanos , Ubiquitinación , Zearalenona/análogos & derivados , Zearalenona/farmacología , Zearalenona/administración & dosificación , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Inflamación/metabolismo , Inflamación/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Ratones Noqueados , Lactonas , Resorcinoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA