RESUMEN
This work presents the first example of acid/base-responsive and near-infrared (NIR)-absorbing photocatalysts based on imidazole-anion-fused perylene diimide chromophores. The photocatalysts were in situ generated by deprotonation of imidazole-fused perylene diimide under an alkaline environment. NIR (λ = 730 nm, 128 mW/cm2) photoinduced atom transfer radical polymerization (ATRP) was implemented, exhibiting high efficiency and excellent livingness under ppm level of photocatalysts (15 ppm relative to monomer) and Cu(II) complex (10 ppm relative to monomer) concentrations. The method showed capabilities to polymerize behind opaque barriers (i.e., paper and pig skin) and under aerobic condition. Notably, this work demonstrated a dual temporal control of polymerization by adding weak base/acid and switching NIR light on/off. The polymerization can even be halted by bubbling CO2 and was then fully recovered by adding triethylamine. The NIR photoATRP of acrylamide monomers in aqueous solution was also performed, which can be regulated by the change of pH.
RESUMEN
A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. 1 H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 µg mL-1 . In addition, the pH-responsive and Cd2+ -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd2+ , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe.
Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Fluorescencia , Colorantes Fluorescentes/síntesis química , Polimerizacion , Polímeros/química , Agua/químicaRESUMEN
Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.
Asunto(s)
Antineoplásicos/química , Curcumina/análogos & derivados , Lipasa/química , Metacrilatos/química , Metilglucósidos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Enzimas Inmovilizadas , Proteínas Fúngicas , Células HeLa , Humanos , Metilaminas/química , Polimerizacion , Solubilidad , Soluciones , Agua/químicaRESUMEN
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Asunto(s)
Hidrogeles , Rayos Ultravioleta , Masculino , Animales , Bovinos , Ratas , Hidrogeles/química , Rayos X , Polimerizacion , Rayos InfrarrojosRESUMEN
Novel water-soluble dendronized fluorescent polyfluorenes (DFPFs) are prepared from hydrophilic monomers and hydrophobic comonomers. Incomplete energy transfer is found to result in a two-color emission of the DFPFs at around 410 and 650 nm. The incomplete energy transfer can be attributed to the poor compatibility between the fluorene and benzothiadiazole units. Polyethylene oxide (PEO) encapsulation of the DFPFs shows over 90% cell viability, indicating good biocompatibility. These DFPFs show differential cellular uptake. P1 with fewer PEO chains exhibits limited cellular membrane uptake and low brightness in cells. By contrast, P3 with more PEO chains is efficiently internalized by cells and accumulated in the cytoplasm. A strong fluorescence from whole cells is also observed.
Asunto(s)
Materiales Biocompatibles/síntesis química , Dendrímeros/química , Fluorenos/síntesis química , Colorantes Fluorescentes/síntesis química , Materiales Biocompatibles/farmacología , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Transferencia de Energía , Fluorenos/farmacología , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Fluorescente , Polietilenglicoles/química , Polimerizacion , Solubilidad , Espectrometría de Fluorescencia , Relación Estructura-Actividad , AguaRESUMEN
Linear and hyperbranched ladder polymers are facilely synthesized by a Pd(0) -catalyzed Suzuki polycondensation and Friedel-Crafts alkylation. The polymers show blue light emission with typical features of ladder polymers, such as well-resolved absorption and emission spectra, and small Stokes shifts. The polymers contain fewer structural defects and they exhibit good optical and thermal stability. No spectral change is observed after the films of ladder polymers are heated at 110 °C in air for 24 h.
Asunto(s)
Cicloparafinas/química , Alquilación , Catálisis , Cicloparafinas/síntesis química , Paladio/química , TemperaturaRESUMEN
Symmetric ladder-type oligo(p-aniline)s and poly(p-aniline)s were successfully synthesized by an intramolecular ring closure in a highly efficient SNAr reaction from oligo(p-phenylene)s and poly(p-phenylene)s with fluorine (F) and secondary amine (NH) groups. Unlike Cadogan ring closure, the newly designed cyclization reaction will not produce a mixture of symmetric and nonsymmetric structures. Moreover, the introduction of the F atom does not hinder Suzuki polymerization. The result indicates that preparing regular oligomers and polymers with a nitrogen bridge is possible.
RESUMEN
A novel polymer poly (6-O-MMAGlc) has been synthesized via free radical polymerization of monomer methyl 6-O-methacryloyl-α-D-glucoside (6-O-MMAGlc) and characterized. The influence of poly(6-O-MMAGlc) on the formation of hen egg white lysozyme (HEWL) amyloid fibril was detailly investigated, indicating that the polymer could effectively inhibit the formation of HEWL amyloid fibril. The formation kinetics of HEWL amyloid fibril with the presence of poly(6-O-MMAGlc) was measured by Thioflavin T (ThT) fluorescence method, demonstrating that poly(6-O-MMAGlc) could significantly inhibit the amyloid fibril formation of HEWL in a dose-dependent manner. The inhibitory result was furtherly illustrated by congo red (CR) binding assay, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism (CD) spectroscopy and transmission electron microscope (TEM).
Asunto(s)
Amiloide/química , Proteínas del Huevo/química , Glucósidos/síntesis química , Muramidasa/química , Amiloide/metabolismo , Animales , Pollos , Proteínas del Huevo/metabolismo , Glucósidos/farmacología , Metacrilatos/química , Muramidasa/metabolismo , Multimerización de Proteína/efectos de los fármacosRESUMEN
In this study, a self-condensing vinyl copolymerization/redox (SCVP/Redox) system was constructed to prepare hyperbranched poly(methyl-6-O-methacryloyl-α-D-glucoside) by using Cu(III) as the initiator in aqueous solution, in which the -OH group in C-2, C-3 and C-4 position on pyranose rings could be initiated by Cu(III). The branched and linear units were clearly distinguished by nuclear magnetic resonance (1H NMR) to estimate the degree of branching (DB). When the ratio of Cu(III) to monomer fixed at 0.5:1, the DB value reached 0.32, which was higher than the product initiated by Ce(IV). Moreover, the inhibition activity of the products on amyloid fibrillation was investigated by using the hen egg-white lysozyme (HEWL) as a model based on the difference of the initiation sites. The results showed that the -OH groups in C-4 position might play an important role in this process.
RESUMEN
Polyphosphonium was facilely grafted onto HNTs in an aqueous phase by a one-step method initiated by Ce(iv) at a mild temperature. The modified HNTs were immersed in a sodium alginate solution to achieve a uniform hydrogel that shows desirable antibacterial activity.
RESUMEN
Two novel Boc-L-isoleucine-functionalized curcumin derivatives have been synthesized and characterized, which exhibited enhanced solubility in water compared with the natural curcumin. The solubility could reach 2.12mg/mL for the monosubstituted compound and 3.05mg/mL for the disubstituted compound, respectively. Their anti-amyloidogenic capacity on the model protein, hen egg white lysozyme (HEWL), was examined in aqueous solution. ThT fluorescence assay showed that the operation concentration was only 0.5mM when the inhibition ratio was above 70%. Meanwhile, the inhibitory capacity of monosubstituted curcumin derivative on the formation of HEWL amyloid fibrils was found to be superior to that of disubstituted derivative, suggesting that the phenolic hydroxyl group might contribute to the anti-amyloidogenic activity. Interaction study showed that both curcumin derivatives could bind with HEWL near tryptophan residues and form new ground-state complex before HEWL self-assemblies into amyloid fibrils and thus inhibits the formation of amyloid fibrils. Both of the two cucumin derivatives have displayed low cytotoxicity with HeLa cell.
Asunto(s)
Amiloide/metabolismo , Curcumina/farmacología , Muramidasa/metabolismo , Benzotiazoles/metabolismo , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/química , Células HeLa , Humanos , Isoleucina/análogos & derivados , Isoleucina/síntesis química , Isoleucina/química , Isoleucina/farmacología , Muramidasa/química , Muramidasa/ultraestructura , Conformación Proteica , Solubilidad , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica , Agua/químicaRESUMEN
Thermo-responsive hyperbranched copoly(bis(N,N-ethyl acrylamide)/(N,N-methylene bisacrylamide)) (HPEAM-MBA) was synthesized by using reversible addition-fragmentation chain-transfer polymerization (RAFT). Interestingly, the zinc ion (Zn2+) was found to have a crucial influence on the lowest critical solution temperature (LCST) of the thermo-responsive polymer. The tetraphenylethylene (TPE) unit was then introduced onto the backbone of the as-prepared thermo-responsive polymer, which endows a Zn2+-responsive "turn-off" effect on the fluorescence properties. The TPE-bearing polymer shows a highly specific response over other metal ions and the "turn-off" response can even be tracked as the concentration of Zn2+ reduces to 2 × 10-5 M. The decrement of fluorescence intensity was linearly dependent on the concentration of Zn2+ in the range of 4-18 µmol L-1. The flexible, versatile and feasible approach, as well as the excellent detection performance, may generate a new type of Zn2+ probe without the tedious synthesis of the moiety bearing Zn2+ recognition units.
RESUMEN
A series of novel hyperbranched poly[2-(α-d-mannopyranosyloxy) ethyl methacrylate-co-N,N'-methylenebisacrylamide] (HPManEMA-co-MBA) are synthesized via a reversible addition fragmentation polymerization (RAFT). The dosage ratios of linear and branch units are tuned to obtain different degree of branching (DB) in hyperbranched glycopolymers. The DB values are calculated according to the content of nitrogen, which are facilely determined by elemental analysis. The lectin-binding properties of HPManEMA-co-MBA to concanavalin A (ConA) are examined using a turbidimetric assay. The influence of defined DB value and molecular weight of HPManEMA-co-MBA on the clustering rate is studied. Notably, HPManEMA-co-MBAs display a low cytotoxicity in the MTT assay, thus are potential candidates for biomedical applications.
RESUMEN
A novel chemical hydrogel was facilely achieved by coupling 1,4-phenylenebisdiboronic acid modified halloysite nanotubes (HNTs-BO) with compressible starch. The modified halloysite nanotubes (HNTs) and prepared hydrogel were characterized by solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The linkage of B-C in the hydrogel can be degraded into B-OH and C-OH units in the presence of H2O2 and result in the degradation of the chemical hydrogel. Pentoxifylline was loaded into the lumen of the HNTs-BO, and then gave the pentoxifylline-loaded hydrogel. The drug release profile shows that it was no more than 7% dissolved when using phosphate buffer solution (PBS) as the release medium. Notably, a complete release (near 90%) can be achieved with the addition of H2O2 ([H2O2] = 1 × 10-4 M), suggesting a high H2O2 responsiveness of the as-formed hydrogel. The drug release results also show that the "initial burst release" can be effectively suppressed by loading pentoxifylline inside the lumen of the HNTs rather than embedding the drug in the hydrogel network. The drug-loaded hydrogel with H2O2-responsive release behavior may open up a broader application in the field of biomedicine.
Asunto(s)
Nanotubos , Silicatos de Aluminio , Carbohidratos , Arcilla , Sistemas de Liberación de Medicamentos , Peróxido de Hidrógeno , PolímerosRESUMEN
Hyperbranched poly(methylene-bis-acrylamide), poly(bis(N,N-propyl acryl amide)) (HPNPAM) and poly(bis(N,N-butyl acryl amide)) were synthesized by reversible addition-fragmentation chain transfer polymerization. HPNPAMs showed lower critical solution temperature (LCST) due to an appropriate ratio between hydrophilic and hydrophobic groups. The effects of reaction conditions on polymerization were investigated in detail. The structure of HPNPAM was characterized by ¹H NMR, FT-IR, Muti detector-size exclusion chromatography (MDSEC) and Ultravioletvisble (UV-Vis). The α value reached 0.20 and DB was 90%, indicating HPNPAMs with compact topology structure were successfully prepared. LCSTs were tuned by Mw and the pH value of the solution. The change of molecular size was assayed by dynamic light scattering and scanning electron microscope. These results indicated that the stable uniform nanomicelles were destroyed and macromolecules aggregated together, forming large particles as temperature exceeded LCST. In addition, after the cells were incubated for 24 h, the cell viability reached 80%, which confirmed this new dual responsive HPNPAM had low cytotoxicity.
RESUMEN
Perylene bisimides dye-based water-soluble fluorescent polymer P3, N,N'-bis(3-amyl)-1-bromo-7-{4'-[3''-(S-poly(N-acryloyl ethylene diamine hydrochloride)-2'''-methyl propionic acid)propionyloxy hexyloxy]phenyl} perylene-3,4:9,10-tetracarboxylic bisimides, was synthesized with polyelectrolyte modification via one-pot reaction (the reduction reaction of trithioester and click reaction between the thiol group and carbon-carbon double bond were simultaneously conducted in one pot with high conversion). One-pot method can overcome the limitation that usual click reaction between thiol and other groups has low conversion because thiol group is subject to rapid oxidation during purification and storage. Chemical, structural, and optical properties of P3 and intermediate products were fully characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared, gel permeation chromatograph, UV-vis spectra, and fluorescence spectra, respectively. The results revealed that P3 displayed excellent water solubility and not only exhibited red strong fluorescence emission band in water but also had the similar photoluminescent spectra to those of intermediate products (M4 and P2) in chloroform. Allowing for the potential application in biological detection field, cell viability and live cell imaging with the presence of P3 were further investigated with Hela cells. The results showed that P3 had low cytotoxicity with strong intracellular fluorescence entry. Meanwhile, with the augment of concentration of P3 (0-0.500 mg mL(-1)), the cell uptake and accumulation of P3 increased and thereby result in enhancement of the intracellular fluorescence. These experiment results suggested that P3 had enormous potential as a fluorescence probe to be an important component in biological detection field.
Asunto(s)
Colorantes Fluorescentes/química , Imidas/química , Imagen Molecular/métodos , Perileno/análogos & derivados , Polímeros/química , Agua/química , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Fenómenos Ópticos , Perileno/química , Polímeros/metabolismo , Polímeros/toxicidad , Solubilidad , Espectrometría de FluorescenciaRESUMEN
A novel fluorescence probe based on modified halloysite nanotubes (HNTs) by using 1-pyrenylboronic acid selectively grafted onto the inner surface of lumen was successfully achieved. The solid-state nuclear magnetic resonance ((13)C and (11)B), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) confirmed that the boronic acid group only binds to alumina at the tube lumen and does not bind the tube's outer siloxane surface. The modified HNTs (HNTs-PY) inherit the spectroscopic properties relating to the pyrene units. Interestingly, the established Al-O-B linkage gives the H2O2-sensitivity to pyrene grafted tubes. HNTs-PY exhibits a highly specific "turn-off" response for hyperoxide over other reactive oxygen species (ROS) and oxidative ions owing to their chemoselective boronate-to-phenol switch. The "turn-off" response can even be tracked when the additional amount of H2O2 was limited to 1 × 10(-6) mol. Thus, the selective modification method under mild conditions for the design of novel organic-inorganic hybrid fluorescence probe may open up a broader application as well as for identification and diagnosis.