Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Environ Manage ; 341: 118111, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156025

RESUMEN

Discharge of saline organic wastewater is increasing worldwide, yet how salt stress disrupts the microbial community's structure and metabolism in bioreactors has not been systematically investigated. The non-adapted anaerobic granular sludge was inoculated into wastewater with varying salt concentration (ranging from 0% to 5%) to examine the effects of salt stress on the structure and function of the anaerobic microbial community. Result indicated that salt stress had a significant impact on the metabolic function and community structure of the anaerobic granular sludge. Specifically, we observed a notable reduction in methane production in response to all salt stress treatments (r = -0.97, p < 0.01), while an unexpected increase in butyrate production (r = 0.91, p < 0.01) under moderate salt stress (1-3%) with ethanol and acetate as carbon sources. In addition, analysis of microbiome structures and networks demonstrated that as the degree of salt stress increased, the networks exhibited lower connectance and increased compartmentalization. The abundance of interaction partners (methanogenic archaea and syntrophic bacteria) decreased under salt stress. In contrast, the abundance of chain elongation bacteria, specifically Clostridium kluyveri, increased under moderate salt stress (1-3%). As a consequence, the microbial carbon metabolism patterns shifted from cooperative mode (methanogenesis) to independent mode (carbon chain elongation) under moderate salt stress. This study provides evidence that salt stress altered the anaerobic microbial community and carbon metabolism characteristics, and suggests potential guidance for steering the microbiota to promote resource conversion in saline organic wastewater treatment.


Asunto(s)
Microbiota , Aguas Residuales , Aguas del Alcantarillado/química , Anaerobiosis , Carbono/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Metano
2.
Biofouling ; 27(7): 773-86, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21781019

RESUMEN

In this study, a method was developed to immobilize silver onto polypropylene (PP) membrane surfaces for improved anti-biofouling performance. A commercial PP membrane was first grafted with the thiol functional groups, and then silver ions were immobilized onto the PP membrane surface through coordinating with the thiol groups. The immobilized silver was found to be very stable, with only ~1.1% of the immobilized silver being leached out during a leaching test. The surface of the modified membrane (PPS-Ag) was examined with ATR-FTIR and XPS analysis, which verified the successful grafting of the thiol groups and the coordination of silver ions on the membrane surface. The surface properties of the membrane were also characterized by SEM, AFM and water contact angle measurements. The PPS-Ag membrane was found to have a smoother and more hydrophilic surface than the PP membrane. Both Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, were used to evaluate the antibacterial and anti-biofouling performance of the PPS-Ag membrane. From disk diffusion experiments, the PPS-Ag membrane exhibited the capability of inhibiting the growth of both the Gram-negative and Gram-positive bacteria tested. The anti-biofouling performance of the membrane was assessed by immersion in a mixed suspension of E. coli and S. aureus and filtration tests. The PPS-Ag membrane showed a stable and significantly enhanced anti-biofouling performance as compared with the PP membrane. The results in this study demonstrate that biofouling of a PP membrane can be sufficiently overcome through immobilizing silver onto the membrane surface.


Asunto(s)
Antibacterianos/farmacología , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Polipropilenos/química , Plata/química , Plata/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Filtración , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Staphylococcus aureus/efectos de los fármacos , Compuestos de Sulfhidrilo/química
3.
Membranes (Basel) ; 11(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073012

RESUMEN

In this study, PVDF/PTFE composite membranes were prepared by adding a PTFE nanoemulsion to a PVDF solution and casting it through the conventional non-solvent-induced phase separation method. The objective was to explore the effectiveness of using a simple and economical method to modify PVDF membranes with PTFE to enhance their anticorrosion performance, especially under highly acidic or alkaline conditions. PTFE nanoparticles (of around 200 nm in size) in nanoemulsion form were blended with PVDF at a mass ratio of PTFE:PVDF in the range of 0-0.3:1. The obtained membranes were examined to determine the effect of the added PTFE nanoparticles on the structure of the modified PVDF membranes as well as on their mechanical strength and surface characteristics. The membranes were then immersed in various concentrations of acidic or alkaline solutions for varied durations ranging from a few days up to as long as 180 days (6 months). The impacts of by the corrosive solutions on the tensile strength, surface roughness, and water flux of the membranes with different exposure times were quantified. The results showed that although a certain extent of change may occur with extended immersion times, greatly enhanced anticorrosion performance was obtained with the prepared PVDF/PTFE membranes compared with the unmodified PVDF membrane. For example, after being immersed in 5 mol-H+··L-1 H2SO4, HCl, and HNO3 solutions for 6 months, the tensile strength at breaking point remained at up to 69.70, 74.07, and 71.38%, respectively, of the initial strength for the PVDF/PTFE (M30) membrane. This was in contrast to values of only 55.77, 70.43, and 61.78% for the unmodified PVDF membrane (M0). Although the water flux and surface roughness showed a change trends to the tensile strength, the PVDF/PTFE (M30) membrane had much higher stability than the PVDF (M0) membrane. In a continuous filtration experiment containing H2SO4 at 0.01 mol-H+·L-1 for 336 h (14 days), the PVDF/PTFE membrane showed a maximum flux change of less than 30%. This was in comparison with a change of up to 50% for the PVDF membrane. However, the PVDF/PTFE membranes did not seem to have a greatly enhanced anticorrosion performance in the alkaline solution environment tested.

4.
Membranes (Basel) ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940452

RESUMEN

In this study, a triple-component copolymer of P(Stx-co-MAAy)-g-fPEGz containing hydrophobic (styrene, St), hydrophilic (methacrylic acid, MAA), and oleophobic (perfluoroalkyl polyethylene glycol, fPEG) segments was synthesized and used as an additive polymer to prepare modified PVDF membrane for enhanced anti-fouling performance. Two compositions of St:MAA at 4:1 and 1:1 for the additive and two blending ratios of the additive:PVDF at 1:9 and 3:7 for the modified membranes were specifically examined. The results showed that the presence of the copolymer additive greatly affected the morphology and performance of the modified PVDF membranes. Especially, in a lower ratio of St to MAA (e.g., St:MAA at 1:1 versus 4:1), the additive polymer and therefore the modified PVDF membrane exhibited both better hydrophilic as well as oleophobic surface property. The prepared membrane can achieve a water contact angle at as low as 48.80° and display an underwater oil contact angle at as high as 160°. Adsorption experiments showed that BSA adsorption (in the concentration range of 0.8 to 2 g/L) on the modified PVDF membrane can be reduced by as much as 93%. From the filtration of BSA solution, HA solution, and oil/water emulsion, it was confirmed that the obtained membrane showed excellent resistance to these organic foulants that are often considered challenging in membrane water treatment. The performance displayed slow flux decay during filtration and high flux recovery after simple water cleaning. The developed membrane can therefore have a good potential to be used in such applications as water and wastewater treatment where protein and other organic pollutants (including oils) may cause severe fouling problems to conventional polymeric membranes.

5.
Biodegradation ; 20(4): 569-80, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19137403

RESUMEN

A membrane-aerated biofilm reactor (MABR) was developed to degrade acetonitrile (ACN) in aqueous solutions. The reactor was seeded with an adapted activated sludge consortium as the inoculum and operated under step increases in ACN loading rate through increasing ACN concentrations in the influent. Initially, the MABR started at a moderate selection pressure, with a hydraulic retention time of 16 h, a recirculation rate of 8 cm/s and a starting ACN concentration of 250 mg/l to boost the growth of the biofilm mass on the membrane and to avoid its loss by hydraulic washout. The step increase in the influent ACN concentration was implemented once ACN concentration in the effluent showed almost complete removal in each stage. The specific ACN degradation rate achieved the highest at the loading rate of 101.1 mg ACN/g-VSS h (VSS, volatile suspended solids) and then declined with the further increases in the influent ACN concentration, attributed to the substrate inhibition effect. The adapted membrane-aerated biofilm was capable of completely removing ACN at the removal capacity of up to 21.1 g ACN/m(2) day, and generated negligible amount of suspended sludge in the effluent. Batch incubation experiments also demonstrated that the ACN-degrading biofilm can degrade other organonitriles, such as acrylonitrile and benzonitrile as well. Denaturing gradient gel electrophoresis studies showed that the ACN-degrading biofilms contained a stable microbial population with a low diversity of sequence of community 16S rRNA gene fragments. Specific oxygen utilization rates were found to increase with the increases in the biofilm thickness, suggesting that the biofilm formation process can enhance the metabolic degradation efficiency towards ACN in the MABR. The study contributes to a better understanding in microbial adaptation in a MABR for biodegradation of ACN. It also highlights the potential benefits in using MABRs for biodegradation of organonitrile contaminants in industrial wastewater.


Asunto(s)
Acetonitrilos/metabolismo , Biopelículas , Reactores Biológicos , Membranas Artificiales , Secuencia de Bases , ADN/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Cinética , Microscopía Electrónica de Rastreo , Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa
6.
Nanomaterials (Basel) ; 9(11)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671771

RESUMEN

In order to reduce the difficulty and risk of operation, decrease the preparation time and improve the adsorption performance of magnetic nano-silicon adsorbent with core-shell structure, a carboxylated CoFe2O4@SiO2 was prepared by EDTA-functionalized method using a safe, mild and simple hydrothermal method. The results show that the prepared material of CoFe2O4@SiO2-EDTA has a maximum adsorption capacity of 103.3 mg/g for mercury ions (Hg(II)) at pH = 7. The adsorption process of Hg(II) is a chemical reaction involving chelation and single-layer adsorption, and follows the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Moreover, the removal of Hg(II) is a spontaneous and exothermic reaction. The material characterization, before and after adsorption, shows that CoFe2O4@SiO2-EDTA has excellent recyclability, hydrothermal stability and fully biodegradable properties. To summarize, it is a potential adsorption material for removing heavy metals from aqueous solutions in practical applications.

7.
J Biotechnol ; 135(1): 52-7, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18403037

RESUMEN

Extracellular polymeric substances (EPS) are one of the main components of the biofilm and perform important functions in the biofilm system. In this study, two membrane-aerated biofilms (MABs) were developed for the thin and thick biofilms under different surface loading rates (SLRs). Supplies of oxygen and substrates in the MAB were from two opposite directions. This counter diffusion of nutrients resulted in a different growth environment, in contrast to conventional biofilms receiving both oxygen and substrates from the same side. The compositions, distributions and physicochemical properties (solubility and bindability) of EPS in the MABs of different thicknesses under different SLRs were studied. The effect of dissolved oxygen (DO) concentration within the MAB on EPS properties and distribution was investigated. Experimental results showed the different biofilm thicknesses produced substantially different profiles of EPS composition and distribution. Soluble proteins were more dominant than soluble polysaccharides in the inner aerobic layer of the biofilms; in contrast, bound proteins were greater than bound polysaccharides in the outer anoxic or anaerobic layer of the biofilms. The biofilm-EPS matrix consisted mainly of bound EPS. Bound EPS exhibited a hump-shaped profile with the highest content occurring in an intermediate region in the thin MAB and relatively more uniformly in the one half of the biofilm close to the membrane side and then declined towards the biofilm-liquid interface in the thick MAB. The profiles of soluble EPS presented a similar declining trend from the membrane towards the outer region in both thin and thick MABs. The study suggested that not only EPS composition but also EPS distribution and properties (solubility and bindability) played a crucial role in controlling the cohesiveness and maintaining the structural stability and stratification of the MABs.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Membranas Artificiales , Oxígeno/metabolismo , Polímeros/química , Líquido Extracelular/metabolismo
8.
Water Res ; 42(6-7): 1511-22, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18035389

RESUMEN

The selective removal of copper and lead ions from aqueous solutions by diethylenetriamine (DETA)-functionalized polymeric adsorbent was investigated. The adsorbent was prepared by amination of the micro-beads synthesized from glycidyl methacrylate and trimethylolpropane trimethacrylate co-polymerization (denoted as P-DETA). In the single metal species system (only copper or lead ions present), P-DETA was found to adsorb copper ions or lead ions significantly (with a slightly higher adsorption uptake capacity for lead ions than copper ions). However, P-DETA displayed an excellent selectivity in the adsorption of copper ions over lead ions in the binary metal species system (with both copper and lead ions present). It was also found that initially (or previously) adsorbed lead ions on P-DETA were displaced, even completely, by subsequently adsorbed copper ions from the solution but the case was not vice versa. The greater electronegativity of copper ions than lead ions was identified as the major factor that caused P-DETA to selectively adsorb copper ions over lead ions during competitive adsorption in the binary metal species system. It was speculated that the displacement of already adsorbed lead ions on P-DETA by subsequently adsorbed copper ions was through an adjacent attachment and repulsion mechanism. P-DETA has been shown to have the potential to be used as an effective adsorbent for the removal as well as selective recovery of heavy metal ions in water or wastewater treatment.


Asunto(s)
Cobre/aislamiento & purificación , Plomo/aislamiento & purificación , Poliaminas/química , Adsorción , Cationes
9.
Nanomaterials (Basel) ; 8(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158471

RESUMEN

To avoid the dangerous operational conditions, shorten the preparation time, and improve the adsorption performance of amino-functionalized nanomagnetic materials with a core⁻shell structure, a magnetic nanocomposite of CoFe2O4@SiO2 was successfully functionalized with amino group (-NH2) through a mild and facile hydrothermal method without the use of any toxic or harmful solvents at a relatively low temperature. The preparation time of the key steps of amino functionalization was shortened from 30 h to about 10 h. The core-shell structure and successful grafting were confirmed by various means. The amino-functionalized CoFe2O4@SiO2 was used for the removal mercury (Hg(II)), a heavy metal, and exhibited excellent magnetic properties and a high Langmuir adsorption capacity of 149.3 mg Hg(II)/g. The adsorption of Hg(II) onto CoFe2O4@SiO2⁻NH2 followed the pseudo-second-order kinetic equation and Langmuir model. The thermodynamic data showed that the Hg(II) adsorption process was achieved through spontaneous exothermic and monolayer adsorption with electrostatic adsorption and chemisorption. In addition, the as-prepared CoFe2O4@SiO2⁻NH2 nanoparticles had a good reusable value, good application performance and stability, and can provide a mild and facile way to remove heavy metals from aqueous solution.

10.
Water Res ; 41(15): 3465-73, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17544472

RESUMEN

A microbial process for the degradation of three types of structurally distinct organonitriles (i.e., saturated and unsaturated aliphatic nitrile and aromatic nitrile) was studied. Microorganisms were enriched from the activated sludge of a pharmaceutical wastewater treatment plant and adapted through providing acetonitrile as the sole carbon and nitrogen source for their growth. The adapted mixed culture was then examined for their capability of degrading acetonitrile, acrylonitrile and benzonitrile under various operational conditions. The performance of biodegradation and the metabolic intermediate- and end-products in the process were monitored. The results show that an average removal rate of 0.083 g acetonitrile g(-1)-VSS h(-1), 0.0074 g acrylonitrile g(-1)-VSS h(-1) or 0.0029 g benzonitrile g(-1)-VSS h(-1) was achieved in the batch bioreactor under the common operational condition of 25 degrees C and pH 7. The biodegradation of acetonitrile and acrylonitrile showed a two-step pathway, with the generation of acetamide followed by acetic acid and ammonia for acetonitrile or acrylamide followed by acrylic acid and ammonia for acrylonitrile. However, the biodegradation of benzonitrile appeared to have only one step, with the direct production of benzoic acid and ammonia, but without benzamide being detected in the process. The results suggest that, depending on the substrates, the adapted mixed culture can develop very different degradation pathways, such as nitrile hydratase plus amidase for acetonitrile or acrylonitrile and nitrilase for benzonitrile. Therefore, the adapted mixed culture has a great potential and flexibility for actual applications in biodegradation of various organonitrile compounds.


Asunto(s)
Nitrilos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado/microbiología , Temperatura , Eliminación de Residuos Líquidos/métodos
11.
Curr Pharm Des ; 23(2): 218-230, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27799041

RESUMEN

BACKGROUND: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. METHODS: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. RESULTS: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. CONCLUSION: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Filtración/instrumentación , Filtración/métodos , Membranas Artificiales , Productos Biológicos/química
12.
J Colloid Interface Sci ; 303(1): 99-108, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16919665

RESUMEN

Amine-functionalized adsorbents have attracted increasing interest in recent years for heavy metal removal. In this study, diethylenetriamine (DETA) was successfully grafted (through a relatively simple solution reaction) onto poly(glycidyl methacrylate) (PGMA) microgranules to obtain an adsorbent (PGMA-DETA) with a very high content of amine groups and the PGMA-DETA adsorbent was examined for copper ion removal in a series of batch adsorption experiments. It was found that the PGMA-DETA adsorbent achieved excellent adsorption performance in copper ion removal and the adsorption was most effective at pH>3 in the pH range of 1-5 examined. X-ray photoelectron spectroscopy (XPS) revealed that there were different types of amine sites on the surfaces of the PGMA-DETA adsorbent but copper ion adsorption was mainly through forming surface complexes with the neutral amine groups on the adsorbent, resulting in better adsorption performance at a higher solution pH value. The adsorption isotherm data best obeyed the Langmuir-Freundlich model and the adsorption capacity reached 1.5 mmol/g in the case of pH 5 studied. The adsorption process was fast (with adsorption equilibrium time less than 1-4 h) and closely followed the pseudo-second-order kinetic model. Desorption of copper ions from the PGMA-DETA adsorbent was most effectively achieved in a 0.1 M dilute nitric acid solution, with 80% of the desorption being completed within the first 1 min. Consecutive adsorption-desorption experiments showed that the PGMA-DETA adsorbent can be reused almost without any loss in the adsorption capacity.


Asunto(s)
Cobre/química , Poliaminas/química , Ácidos Polimetacrílicos/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Adsorción , Cationes Bivalentes/química
13.
Water Res ; 101: 103-113, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27258621

RESUMEN

Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment.


Asunto(s)
Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Colorantes/química , Formiatos , Rayos Ultravioleta
14.
Water Res ; 39(4): 688-98, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15707642

RESUMEN

Chitosan hydrogel beads were studied for the adsorption of lead ions and humic acid from aqueous solutions to examine the adsorption behaviors and mechanisms. The experiments were carried out at room temperature with solution pH ranging from 5 to 7.5 (in near neutral pH range). Three types of batch adsorption experiments, including single species adsorption, sequential adsorption of one species after another and co-adsorption of both species, were investigated. The results show that: (1) adsorption of either species mainly results from the complexations between adsorbate and functional groups at the surface of the hydrogel beads; (2) previously adsorbed species can either act as additional binding sites for, or occupy the same binding sites as the subsequent species to be adsorbed, resulting in enhanced or retarded adsorption of the subsequent species; and (3) for co-adsorption, metal-organic interactions play a very important role in determining the extent of adsorption. It is concluded that multi-species adsorption can be significantly affected by adsorbate interactions and the understanding of these interactions needs great attention in adsorption study in the future.


Asunto(s)
Quitosano/química , Sustancias Húmicas/análisis , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Plomo/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Sitios de Unión , Concentración de Iones de Hidrógeno , Propiedades de Superficie , Temperatura , Factores de Tiempo
15.
Water Res ; 38(9): 2423-31, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15142804

RESUMEN

Aminated polyacrylonitrile fibers (APANFs) were prepared and used as an adsorbent in a series of batch adsorption experiments for the removal of Cr(III) and Cr(VI) species from aqueous solutions of different pH values. The results show that significant amounts of Cr(III) or Cr(VI) species can be adsorbed by the APANFs, although the adsorption performances was greatly dependent upon the solution pH values. In general, the amounts of adsorption for Cr(III) species increased whereas that for Cr(VI) decreased with the increase of the solution pH values, which suggests that different adsorption mechanisms dominated the removal of Cr(III) or Cr(VI) species on the APANFs. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed that the adsorption of Cr(III) species on the APANFs was largely attributed to the formation of surface complexes between the nitrogen atoms on the APANFs and the Cr(III) species adsorbed, but the adsorption of Cr(VI) species on the APANFs was more likely effected through the formation of hydrogen bonds at high solution pH values or through both electrostatic attraction and surface complexation at low solution pH values. It was found that the Cr(VI)-adsorbed APANFs can be effectively regenerated in a basic solution and be reused almost without any loss of the adsorption capacity, while the Cr(III)-adsorbed APANFs needed to be regenerated in an acidic solution and the regeneration appeared to be less effective.


Asunto(s)
Resinas Acrílicas/química , Cromo/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Adsorción , Aminación , Carcinógenos Ambientales/aislamiento & purificación , Cromo/química , Concentración de Iones de Hidrógeno , Soluciones , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Agua
16.
J Colloid Interface Sci ; 264(1): 30-8, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12885516

RESUMEN

Chitosan, a naturally abundant biopolymer, has widely been studied for metal adsorption from various aqueous solutions, but the extension of chitosan as an adsorbent to remove humic substances from water has seldom been explored. In this study, chitosan was coated on the surface of polyethyleneterephthalate (PET) granules through a dip and phase inversion process and was examined for humic acid removal in a series of batch adsorption experiments. Scanning electron microscopic (SEM) images showed that the PET granules were uniformly covered with a layer of chitosan and the chitosan layer possessed numerous open pores on the surface. Zeta potential study indicated that the chitosan-coated granules had positive zeta potentials at pH < 6.6 and negative zeta potentials at pH > 6.6. Adsorption of humic acid onto the chitosan-coated granules was found to be strongly pH-dependent. Significant amounts of humic acid were adsorbed under acidic and neutral pH conditions, but the adsorption capacity was reduced remarkably with increasing solution pH values. The adsorption isothermal data under various initial humic acid concentrations (at the same solution pH value) can be adequately modeled by the Langmuir and Freundlich models. X-ray photoelectron spectroscopy (XPS) revealed that the amino groups of the chitosan layer were protonated due to humic acid adsorption, suggesting the formation of organic complex between the protonated amino groups and humic acid. Kinetic study indicated that the adsorption process was transport-limited at low solution pH values, but became both transport- and attachment-limited at high solution pH values.


Asunto(s)
Quitina/análogos & derivados , Quitina/química , Sustancias Húmicas , Adsorción , Quitosano , Cinética , Tereftalatos Polietilenos/química
17.
J Colloid Interface Sci ; 280(1): 36-43, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15476771

RESUMEN

Aminated polyacrylonitrile fibers (APANFs) were prepared by surface modification and were used as an adsorbent to remove humic acid from aqueous solutions. The APANFs were found to be very effective in removing humic acid at the pH range from 2 to 10. The adsorption isotherm obeyed both the Langmuir and Freundlich models, and the adsorption kinetics followed an initial diffusion-controlled and then an attachment-controlled adsorption pattern. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy revealed that chemical bonds were formed between the nitrogen atoms in the amine groups on the fibers and humic acid molecules adsorbed, suggesting that, besides electrostatic interaction, surface complexation also played an important role in humic acid adsorption on the APANFs. The humic acid adsorbed on the APANFs can be effectively desorbed in a 0.1 M NaOH solution, and the regenerated APANFs can be reused in the subsequent adsorption cycles without significant loss of the adsorption capacities.

18.
J Colloid Interface Sci ; 260(2): 265-72, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12686174

RESUMEN

Polyacrylonitrile fiber (PANF) was hydrolyzed in a solution of sodium hydroxide and the hydrolyzed polyacrylonitrile fiber (HPANF) was used as an adsorbent to remove copper ions from aqueous solution. Scanning electron microscopy (SEM) showed that the hydrolysis process made the surface of HPANF rougher than that of PANF. Fourier transform infrared (FTIR) spectroscopy revealed that the HPANF contained conjugated imine (-Cz=Nz-) sequences. Batch adsorption results indicated that the HPANF was very effective in adsorbing copper, and the adsorption equilibrium could be reached within 10-20 min. Atomic force microscopy (AFM) showed that some aggregates formed on the surface of the HPANF after copper ion adsorption and the average surface roughness (R(a)) value of the HPANF changed from 0.363 to 3.763 nm due to copper adsorption. FTIR analysis indicated that copper adsorption caused a decrease of the light adsorption intensity of the imine (-Cz=Nz-) groups at 1573 and 1406 cm(-1) wavenumbers, and X-ray photoelectron spectroscopy (XPS) showed that the binding energy (BE) of some of the nitrogen atoms in the HPANF increased to a greater value due to copper adsorption. The FTIR and XPS results suggest that the adsorption of copper ions to the HPANF is attributed to the imine groups on the surface of the HPANF.

19.
Waste Manag ; 22(5): 557-67, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12092766

RESUMEN

This paper presents an overview of the current solid waste management situation in Singapore and provides a brief discussion of the future challenges. Singapore is a small island city-state with a large population, warm climate and high humidity. Over the past two to three decades, rapid industrialization and economic development have caused a tremendous increase in solid waste generation. The yearly disposed solid waste increased from 0.74 million tonnes in 1972 to 2.80 million tonnes in 2000. Solid waste management in Singapore has traditionally been undertaken by the Ministry of Environment (ENV), with the participation of some private sectors in recent years. The hierarchy of solid waste management in Singapore is waste minimization (reduce, reuse and recycle or so-called 3 Rs), followed by incineration and landfill. As land is extremely scarce and only one newly constructed offshore landfill site is available, solid waste incineration has been identified as the most preferred disposal method. Waste minimization, the utilization of incineration ashes, industrial waste management are regarded to be the major challenges in the future.


Asunto(s)
Residuos Industriales , Eliminación de Residuos , Economía , Humedad , Incineración , Singapur , Clima Tropical
20.
J Colloid Interface Sci ; 350(1): 282-9, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20619851

RESUMEN

In this paper, the adsorption selectivity and mechanism of diethylenetriamine (DETA)-functionalized PGMA adsorbent (denoted as P-DETA) toward a number of heavy metal ions, including Cu, Co, Ni, Zn, and Cd ions, were experimentally and analytically examined. Experimental results showed a selective adsorption sequence, based on the adsorption affinity, of Cu>Co>Ni>Zn>Cd ions on P-DETA. X-ray absorption fine structure (XAFS) analysis was used to reveal the adsorption coordination geometry, bond length, and coordination number of each type of metal ion with the DETA group. The analysis indicated that Cu, Ni, and Zn ions formed tetrahedral geometry (fourfold coordination) when adsorbed, while Co ion showed an octahedral geometry (sixfold coordination). However, the coordination geometry for Cd could not be obtained in the analysis due to the lack of reference information. The analysis from EXAFS further confirmed that the ratio of DETA ligand to the adsorbed metal ion was probably 1 for Cu, Ni, or Zn ions, while that ratio was 2 for Co ion. From the stability constant (in the log K form) for a metal ion-DETA ligand coordination (denoted as ML(n), where M indicates a heavy metal ion, and L(n) indicates n numbers of ligands involved), a relationship of log K (CuL)>log K (CoL(2))>log K (NiL)>log K (ZnL)>log K (CdL) is suggested. This sequence is in good correlation with the experimentally derived adsorption selective sequence of Cu>Co>Ni>Zn>Cd ions, indicating that the coordination geometry played an important role in the determination of the adsorption selectivity for heavy metal ions by the polyamine-functionalized adsorbent of P-DETA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA