Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175360

RESUMEN

Carbon sequestration is the primary function of biochar. Hence, it is necessary to design biochar with high carbon (C) retention and low C loss. In this study, three P compounds, including KH2PO4, Ca(H2PO4)2, and NH4H2PO4, were premixed with corn stalk (1:4, w/w), aiming to produce biochars (CSB+K, CSB+Ca, and CSB+N) with high C sequestration and slow release of P at three temperatures (300, 500, and 700 °C). The addition of all P sources obviously increased C retention, with the order of NH4H2PO4 (65.6-83.5%) > Ca(H2PO4)2 (60.4-78.2%) > KH2PO4 (50.1-76.1%), compared with the pristine biochar (47.8-73.6%). The addition of Ca(H2PO4)2 and KH2PO4 led to an increase in aromaticity and graphitization, as evidenced by H/C, FTIR, Raman and XPS analysis, whereas an opposite result occurred on CSB+N. Furthermore, all three phosphates reduced C loss of biochars with H2O2 oxidation, and CSB+Ca showed the best effect. Ca(H2PO4)2 and KH2PO4 pretreated biochars had higher resistance to K2Cr2O7 oxidation and thermal treatment. In contrast, the C loss of NH4H2PO4-added biochar at 500 and 700 °C with K2Cr2O7 oxidation was increased by 54% and 36%, respectively. During the pyrolysis process, Ca(H2PO4)2 was transformed into insoluble Ca2P2O7, leading to the lowest P release rate of CSB+Ca. This study indicates that co-pyrolysis of corn stalk and Ca(H2PO4)2 is optimal for increasing C retention, enhancing C stability and improving slow-release performance of P regardless of pyrolysis temperature.


Asunto(s)
Fosfatos , Fósforo , Temperatura , Secuestro de Carbono , Pirólisis , Peróxido de Hidrógeno , Carbón Orgánico , Carbono
2.
Molecules ; 27(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956817

RESUMEN

It is inevitable that reclaimed cotton stalks will contain a certain amount of plastic film due to the wide application of plastic mulching during the process of cotton cultivation, and this makes it inappropriate to return it to the field or for it to be processed into silage. In this study, biochars were prepared by the co-pyrolysis of cotton stalk with low-density polyethylene (LDPE) in the proportions of 1:0, 3:1, 2:1, and 1:1 (w/w) at 400 °C, 450 °C, and 500 °C and maintaining them for 1 h. The effects of the co-pyrolysis of cotton stalk with LDPE on the properties of biochars (e.g., pH, yield, elemental analysis, specific surface area, etc.) and the Pb(II) removal capacity were analyzed. Co-pyrolysis cotton stalks with LDPE could delay the decomposition of LDPE but could promote the decomposition of cotton stalk. At 400 °C and 450 °C, the addition of LDPE decreased the H/C ratio, while no significant difference was found between the pristine biochar and the blended biochar pyrolyzed at 500 °C. An FTIR analysis indicated that the surface functional groups of biochar were not affected by the addition of LDPE, except for CH3 and CH2. The results of the SEM showed that LDPE could cover the surface of biochar when pyrolyzed at 400 °C, while many macropores were found in the blended biochar that was pyrolyzed at 450 °C and 500 °C, thus increasing its surface area. The blended biochar that was pyrolyzed at 500 °C was more effective in the removal of Pb(II) than the cotton-stalk-derived biochar, which was dominated by monolayer adsorption with a maximum adsorption capacity of approximately 200 mg·g-1. These results suggested that the co-pyrolysis of cotton stalks and LDPE may be used to produce biochar, which is a cost-effective adsorbent for heavy metal removal from aqueous solutions.


Asunto(s)
Polietileno , Pirólisis , Adsorción , Carbón Orgánico/química , Plomo
3.
Water Sci Technol ; 81(10): 2270-2280, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32701504

RESUMEN

It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e-) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


Asunto(s)
Contaminantes Químicos del Agua/análisis , Zea mays , Adsorción , Carbón Orgánico , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética
4.
J Environ Sci Health B ; 55(11): 941-950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32715911

RESUMEN

Animal manures usually contain high contents of heavy metals (HMs) and thus pose a considerable threat to human health and environment when applied to soil. In this study, the effect of pyrolysis temperature (300 °C, 400 °C, 500 °C, 600 °C, and 700 °C) on the properties of biochar produced from chicken manure was studied. In addition, the response of speciation, bioavailability, leachability, and environmental risk of HMs in biochar to different pyrolysis temperature was investigated. The results showed that biochars pyrolyzed at high temperatures generally had high pH, ash content, surface area, and stability. As the pyrolysis temperature increased, the total concentrations of Cu, Zn, Cr, and Ni continually increased, whereas those of Pb and Cd initially increased and then decreased. Moreover, the transformation of the bioavailable fractions of HMs into stable fractions obviously increased with increasing pyrolysis temperature. Thus, pyrolysis at high temperature led to a further decrease in the bioavailability, leachability, and environmental risk of six HMs, as shown by DTPA, TCLP, and the potential ecological risk index. Overall, it is convincing that that 700 °C is the optimal temperature when considering the quality and environmental safety of biochar derived from chicken manure.


Asunto(s)
Carbón Orgánico/química , Estiércol , Metales Pesados/química , Administración de Residuos/métodos , Animales , Disponibilidad Biológica , Pollos , Calor , Metales Pesados/análisis , Metales Pesados/farmacocinética , Pirólisis , Factores de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Espectroscopía Infrarroja por Transformada de Fourier
5.
Waste Manag ; 169: 52-61, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37406504

RESUMEN

Poor properties and high concentrations of heavy metals are still major concerns of successful application of animal manure-derived biochar into the environment. This work thus proposed to add chlorine-based additives (Cl-additives, i.e., CaCl2, MgCl2, KCl, NaCl, and PVC, 50 g Cl/ kg) to improve biochar properties and enhance heavy metal volatilization during swine manure pyrolysis. The results showed that the addition of CaCl2 could improve the retention of carbon (C) by up to 13.1% during pyrolysis, whereas other Cl-additives had little effect on it. Moreover, CaCl2 could enhance the aromaticity of biochar, as indicated by lower H/C ratio than raw biochar. Pretreatment with CaCl2, MgCl2 and PVC reduced phosphorus (P) solubility but increased its bioavailability via the formation of chlorapatite (Ca5(PO4)3Cl). The CaCl2 was more effective for enhancing the volatilization efficiency of heavy metals than other Cl-additives, except for Pb that tended to react with the generated Ca5(PO4)3Cl to form more stable and less volatile Pb5(PO4)3Cl. However, high pyrolysis temperature (900℃) was essential for CaCl2 to simultaneously decrease the bioavailability of heavy metals. Our results indicated that co-pyrolysis of swine manure with CaCl2 is a promising strategy to increase C retention, P bioavailability, and volatilization of heavy metals, and, at higher temperature, reduce the bioavailability of biochar-born heavy metals.


Asunto(s)
Cloro , Metales Pesados , Porcinos , Animales , Estiércol , Pirólisis , Cloruro de Calcio , Plomo , Volatilización , Carbón Orgánico
6.
Waste Manag ; 123: 69-79, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33571831

RESUMEN

Although pyrolysis is a promising way for treating animal manure, the application is restricted with some limitations of biochar. To improve the quality of biochar derived from swine manure and enhance the immobilization of heavy metals (Cu and Zn) in it, swine manure was mixed with four types of Ca-based additives (CaO, CaCO3, Ca(OH)2, and Ca(H2PO4)2) prior to pyrolysis at 300-700 °C. The thermogravimetric characteristics of swine manure were obviously influenced The addition of CaO, CaCO3, and Ca(OH)2 during the whole decomposition process. Furthermore, with the addition of CaO and Ca(OH)2, the emission of CO2 and CO was substantially decreased at 200-500 °C, whereas the formation of CO, H2, CO2, and CH4 was drastically increased at 600-800 °C. The biochar produced with CaO addition had the highest pH, surface area and carbon content. Moreover, by addition of Ca-based additives, except for Ca(H2PO4)2, the transformation of labile Cu and Zn to the stable fraction was promoted, and the leachability and environmental risk of them were simultaneously reduced. In contrast, CaO and Ca(OH)2 were more favorable for the immobilization of Cu and Zn than CaCO3. Our study indicated that the catalytic pyrolysis using CaO was an effective and valuable method of animal manure treatment.


Asunto(s)
Estiércol , Metales Pesados , Animales , Calcio , Carbón Orgánico , Porcinos
7.
Waste Manag ; 105: 511-519, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32143146

RESUMEN

In order to improve characteristics of biochar, especially enhance immobilization of heavy metals in biochar, swine manure was pyrolyzed at low pyrolysis temperature (300 °C, 400 °C and 500 °C) with different amounts of sodium hydroxide (NaOH) added (0.5% and 2%, W/W). Results showed that NaOH addition during pyrolysis increased the pH, EC, ash content, yield rate, aromaticity and hydrophily, but did not increase surface area and porosity of resultant biochars. The addition of NaOH promoted the transformation of the mobile fraction of Cu, Zn and Cd into the oxidizable fraction. With respect to Cr and Pb, the oxidizable and residual fractions were increased slightly by the presence of NaOH. Meanwhile, adding NaOH could reduce the leachability and ecological risks of heavy metals in biochars. Our study suggested that NaOH-assisted pyrolysis of swine manure was an effective disposal approach for the immobilization of heavy metals.


Asunto(s)
Estiércol , Metales Pesados , Animales , Carbón Orgánico , Hidróxido de Sodio , Porcinos
8.
J Hazard Mater ; 380: 120870, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31330385

RESUMEN

Co-pyrolysis of straws with manures has been found effective to mitigate heavy metal risks in manure-derived biochars. This study further investigated co-pyrolysis strategy on the levels, species and risks of metals (Cu, Zn, Cr, Ni, Pb, and Cd) carried by manure-based biochars through co-pyrolyzing swine manure (SM) and corn straw (CS) with different mixture ratios (1:0, 0:1, 3:1, 1:1, and 1:3, w/w) at 300 ℃, 500 ℃ and 700 ℃. The total heavy metals in SM biochars were significantly reduced by CS addition except when SM/CS ratio was 3:1 at 300 ℃. Notably, CS addition increased stable Ni, Zn, Cu, Pb and Cd, but simultaneously mobilized part of Ni, Zn, Cu and Pb in SM biochars, especially at higher CS ratio and higher temperature. Co-pyrolysis converted less stable Cd to more stable Cd at all pyrolysis conditions, with higher CS ratio and higher temperature more effective. Overall, higher temperature (700 ℃) and higher addition ratio of CS (SM/CS 1:3) were more favorable for mitigating the potential ecological index of biochar-bearing Cd, Cu and Zn, the dominating risky contributor to SM biochars, hence more effective to mitigate the overall environmental risks of heavy metals in the derived SM biochars.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales/química , Estiércol , Metales Pesados/química , Pirólisis , Animales , Calor , Poaceae , Medición de Riesgo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA