RESUMEN
Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.
RESUMEN
The configuration of electrode materials is of great significance to the performance of supercapacitors (SCs) because of its direct effects on specific surface area and electron transfer path. Given this, herein, a series of Co3O4 hierarchical configurations composed of porous acicular nanorods are designedly synthesized on Ni foam with in-site self-organization method depending on the addition of NH4F. In the absence of NH4F, Co3O4 nanorods self-assemble into porous urchin-like structure (PULS), while the introduction of NH4F can induce the vertical growth of Co3O4 acicular nanorods, forming porous acicular nanorod arrays (PANRAs). By simply tuning the concentration of NH4F, the Co3O4 PANRAs with different specific surface area can be obtained. As expected, Co3O4 PANRAs electrode for SCs (using 1 mmol of NH4F) exhibits high specific capacitance (1486 F g-1 at 1 A g-1) and excellent cycling stability (98.8% retention after 5000 continuous charge-discharge cycles), which are better than those of Co3O4 PULS electrode (658.2 F g-1 at 1 A g-1, 90.4%). Corresponding solid-state symmetric SC achieves a high energy density of 48.63 Wh kg-1 at power density of 600 W kg-1. Such superior performance is attributed to fast charge transfer kinetics, facile electron transport and ions diffusion rate resulting from porous array structure, indicating the importance of configuration design of electrode materials for high performance SCs.
RESUMEN
The development of flexible all-solid-state rechargeable Zn-air batteries (FS-ZABs) for wearable applications faces challenges from the balance between performance and flexibility of the battery; efficient cathode catalyst and reasonable electrode construction design are key factors. Herein, a low-cost pollen derived N,S co-doped porous carbon decorated with Co9S8/Fe3S4 nanoparticle hybrids (Co-Fe-S@NSRPC) has been synthesized. Owing to the active Co9S8/Fe3S4 nanoparticles, N,S co-doping, and large specific area of the pollen derived porous carbon matrix, the Co-Fe-S@NSRPC composite exhibits an excellent bifunctional catalytic activity with a small potential gap (ΔE = 0.80 V) between the half-wave potential for the ORR (0.80 V) and the potential at 10 mA cm-2 for the OER (1.60 V), and endows a liquid Zn-air battery with a high power density of 138 mW cm-2, a larger specific capacity of 891 mA h g-1 and a stable rechargeability of up to 331 cycles. Based on the Co-Fe-S@NSRPC cathode catalyst, a 2D coplanar FS-ZAB has been fabricated with specially designed parallel narrow strip electrodes alternately arrayed on a polyacrylamide polyacrylic acid copolymer hydrogel solid electrolyte. The presented FS-ZAB exhibits excellent battery performance with high open-circuit-voltage (1.415 V), competitive peak power density (78 mW cm-2), large specific capacity (785 mA h g-1) and stable rechargeability (150 cycles), offers robust flexibility to maintain stable charge/discharge capacity under different bending deformations, and provides convenient coplanar integrability to realize parallel or series connection of multiple cells in a relatively small area.
RESUMEN
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes associated with neurological disorders, cardiovascular diseases, cancer and viral infection. MiRNA-based therapeutics have broad applications including cancer immunotherapy, genomic engineering and protein replacement therapy. Until now, a variety of materials have been proved to be promising as non-viral nanocarriers for intracellular delivery of miRNAs, such as polymeric nanoparticles, lipid nanocapsules, and inorganic nanoparticles, etc. In this review, we will present the strategies for intracellular miRNA delivery, and specially focus on rationally designed routes, their mechanisms of action, and potential therapeutics used in the host cells or in vivo studies. Futhermore, we will also make a conclusion based on the current development. The perspective on the new generation of delivery systems toward the emerging area of miRNA-based therapeutics will be discussed as well.
Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , MicroARNs/uso terapéutico , Nanopartículas/uso terapéutico , Humanos , MicroARNs/administración & dosificación , MicroARNs/farmacologíaRESUMEN
Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.
RESUMEN
Hierarchical mesoporous silica@Co-Al layered double hydroxide (m-SiO2@Co-Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co-Al LDH, the synthetic m-SiO2@Co-Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co-Al LDH nanosheets. Subsequently, the m-SiO2@Co-Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co-Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co-Al LDH play pivotal roles in the flame retardance enhancement.