Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(13): E2563-E2570, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28320959

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) family comprises three subtypes: PPARα, PPARγ, and PPARδ. PPARδ transcriptionally modulates lipid metabolism and the control of energy homeostasis; therefore, PPARδ agonists are promising agents for treating a variety of metabolic disorders. In the present study, we develop a panel of rationally designed PPARδ agonists. The modular motif affords efficient syntheses using building blocks optimized for interactions with subtype-specific residues in the PPARδ ligand-binding domain (LBD). A combination of atomic-resolution protein X-ray crystallographic structures, ligand-dependent LBD stabilization assays, and cell-based transactivation measurements delineate structure-activity relationships (SARs) for PPARδ-selective targeting and structural modulation. We identify key ligand-induced conformational transitions of a conserved tryptophan side chain in the LBD that trigger reorganization of the H2'-H3 surface segment of PPARδ. The subtype-specific conservation of H2'-H3 sequences suggests that this architectural remodeling constitutes a previously unrecognized conformational switch accompanying ligand-dependent PPARδ transcriptional regulation.


Asunto(s)
PPAR delta/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína
2.
Virol J ; 9: 305, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23231773

RESUMEN

BACKGROUND: Despite the effectiveness of highly active antiretroviral therapy (HAART), there remains an urgent need to develop new human immunodeficiency virus type 1 (HIV-1) inhibitors with better pharmacokinetic properties that are well tolerated, and that block common drug resistant virus strains. METHODS: Here we screened an in-house small molecule library for novel inhibitors of HIV-1 replication. RESULTS: An active compound containing a 3-aminoimidazo[1,2-a]pyridine scaffold was identified and quantitatively characterized as a non-nucleoside reverse transcriptase inhibitor (NNRTI). CONCLUSIONS: The potency of this compound coupled with its inexpensive chemical synthesis and tractability for downstream SAR analysis make this inhibitor a suitable lead candidate for further development as an antiviral drug.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Imidazoles/farmacología , Pirazinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Fármacos Anti-VIH/química , Evaluación Preclínica de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , VIH-1/fisiología , Humanos , Imidazoles/química , Pirazinas/química , Inhibidores de la Transcriptasa Inversa/química , Bibliotecas de Moléculas Pequeñas/farmacología
3.
Proc Natl Acad Sci U S A ; 105(39): 15190-5, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18818305

RESUMEN

Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.


Asunto(s)
Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Cromatografía Liquida/métodos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/aislamiento & purificación , Espectrometría de Masas/métodos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Proteínas de Plantas/agonistas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Relación Estructura-Actividad
4.
Nat Neurosci ; 10(8): 1063-72, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603477

RESUMEN

Proteins participate in various biological processes and can be harnessed to probe and control biological events selectively and reproducibly, but the genetic code limits the building block to 20 common amino acids for protein manipulation in living cells. The genetic encoding of unnatural amino acids will remove this restriction and enable new chemical and physical properties to be precisely introduced into proteins. Here we present new strategies for generating orthogonal tRNA-synthetase pairs, which made possible the genetic encoding of diverse unnatural amino acids in different mammalian cells and primary neurons. Using this new methodology, we incorporated unnatural amino acids with extended side chains into the K+ channel Kv1.4, and found that the bulkiness of residues in the inactivation peptide is essential for fast channel inactivation, a finding that had not been possible using conventional mutagenesis. This technique will stimulate and facilitate new molecular studies using tailored unnatural amino acids for cell biology and neurobiology.


Asunto(s)
Aminoácidos/genética , Código Genético , Mutagénesis Sitio-Dirigida/métodos , Neuronas/fisiología , Biosíntesis de Proteínas/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Hipocampo/citología , Humanos , Canal de Potasio Kv1.4/química , Canal de Potasio Kv1.4/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Modelos Biológicos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Transfección
5.
Plant J ; 58(6): 961-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19222805

RESUMEN

Floral scent has been extensively investigated in plants of the South American genus Petunia. Flowers of Petunia integrifolia emit mostly benzaldehyde, while flowers of Petunia axillaris subsp. axillaris emit a mixture of volatile benzenoid and phenylpropanoid compounds that include isoeugenol and eugenol. Flowers of the artificial hybrid Petunia hybrida, a cross between P. integrifolia and P. axillaris, emit a similar spectrum of volatiles as P. axillaris subsp. axillaris. However, the flowers of P. axillaris subsp. parodii emit neither isoeugenol nor eugenol but contain high levels of dihydroconiferyl acetate in the petals, the main scent-synthesizing and scent-emitting organs. We recently showed that both isoeugenol and eugenol in P. hybrida are biosynthesized from coniferyl acetate in reactions catalyzed by isoeugenol synthase (PhIGS1) and eugenol synthase (PhEGS1), respectively, via a quinone methide-like intermediate. Here we show that P. axillaris subsp. parodii has a functional EGS gene that is expressed in flowers, but its IGS gene contains a frame-shift mutation that renders it inactive. Despite the presence of active EGS enzyme in P. axillaris subsp. parodii, in the absence of IGS activity the coniferyl acetate substrate is converted by an as yet unknown enzyme to dihydroconiferyl acetate. By contrast, suppressing the expression of PhIGS1 in P. hybrida by RNA interference also leads to a decrease in isoeugenol biosynthesis, but instead of the accumulation of dihydroconiferyl acetate, the flowers synthesize higher levels of eugenol.


Asunto(s)
Eugenol/análogos & derivados , Flores/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Petunia/enzimología , Proteínas de Plantas/metabolismo , Acetatos/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Eugenol/metabolismo , Flores/genética , Mutación del Sistema de Lectura , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Odorantes/análisis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Petunia/genética , Proteínas de Plantas/genética , Interferencia de ARN , ARN de Planta/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Volatilización
6.
Plant J ; 54(3): 362-74, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18208524

RESUMEN

Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.


Asunto(s)
Clarkia/enzimología , Enzimas/metabolismo , Petunia/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clarkia/genética , Clarkia/metabolismo , Electroforesis en Gel de Poliacrilamida , Enzimas/genética , Eugenol/análogos & derivados , Eugenol/química , Eugenol/metabolismo , Flores/enzimología , Flores/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Petunia/genética , Petunia/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido
7.
J Nat Prod ; 72(11): 1980-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19842686

RESUMEN

(+/-)-Laetirobin (1) was isolated as a cytostatic lead from Laetiporus sulphureus growing parasitically on the black locust tree, Robinia pseudoacacia, by virtue of a reverse-immunoaffinity system. Using an LC/MS procedure, milligram quantities of (+/-)-laetirobin (1) were obtained, and the structure of 1 was elucidated by X-ray crystallography and confirmed by NMR spectroscopy. Preliminary cellular studies indicated that (+/-)-laetirobin (1) rapidly enters in tumor cells, blocks cell division at a late stage of mitosis, and invokes apoptosis.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Benzofuranos/aislamiento & purificación , Coriolaceae/química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzofuranos/química , Benzofuranos/farmacología , División Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Cuerpos Fructíferos de los Hongos/química , Mitosis/efectos de los fármacos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Robinia/microbiología , Estereoisomerismo
8.
Chem Biol ; 13(12): 1327-38, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17185228

RESUMEN

Aromatic amino acid ammonia-lyases catalyze the deamination of L-His, L-Phe, and L-Tyr, yielding ammonia plus aryl acids bearing an alpha,beta-unsaturated propenoic acid. We report crystallographic analyses of unliganded Rhodobacter sphaeroides tyrosine ammonia-lyase (RsTAL) and RsTAL bound to p-coumarate and caffeate. His 89 of RsTAL forms a hydrogen bond with the p-hydroxyl moieties of coumarate and caffeate. His 89 is conserved in TALs but replaced in phenylalanine ammonia-lyases (PALs) and histidine ammonia-lyases (HALs). Substitution of His 89 by Phe, a characteristic residue of PALs, yields a mutant with a switch in kinetic preference from L-Tyr to L-Phe. Structures of the H89F mutant in complex with the PAL product, cinnamate, or the PAL-specific inhibitor, 2-aminoindan-2-phosphonate (AIP), support the role of position 89 as a specificity determinant in the family of aromatic amino acid ammonia-lyases and aminomutases responsible for beta-amino acid biosynthesis.


Asunto(s)
Amoníaco-Liasas , Fenilalanina , Secuencia de Aminoácidos , Amoníaco-Liasas/química , Amoníaco-Liasas/metabolismo , Sitios de Unión , Ácidos Cafeicos/química , Ácidos Cumáricos/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Rhodobacter sphaeroides/enzimología , Alineación de Secuencia , Especificidad por Sustrato
9.
Plant Physiol ; 149(1): 384-94, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18987218

RESUMEN

The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 microm for coumaryl acetate and 230 microm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 microm for isoeugenol and 54.5 microm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol.


Asunto(s)
Anisoles/metabolismo , Metiltransferasas/metabolismo , Pimpinella/enzimología , Derivados de Alilbenceno , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Datos de Secuencia Molecular , Filogenia , Pimpinella/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Especificidad por Sustrato
10.
ACS Chem Biol ; 3(5): 294-304, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18376812

RESUMEN

Caenorhabditis elegans sense natural chemicals in their environment and use them as cues to regulate their development. This investigation probes the mechanism of sensory trafficking by evaluating the processing of fluorescent derivatives of natural products in C. elegans. Fluorescent analogs of daumone, an ascaroside, and apigenin were prepared by total synthesis and evaluated for their ability to induce entry into a nonaging dauer state. Fluorescent imaging detailed the uptake and localization of every labeled compound at each stage of the C. elegans life cycle. Comparative analyses against natural products that did not induce dauer indicated that dauer-triggering natural products accumulated in the cuticle of the pharnyx. Subsequent transport of these molecules to amphid neurons signaled entry into the dauer state. These studies provide cogent evidence supporting the roles of the glycosylated fatty acid daumone and related ascarosides and the ubiquitous plant flavone apigenin as chemical cues regulating C. elegans development.


Asunto(s)
Caenorhabditis elegans , Ácidos Grasos , Colorantes Fluorescentes , Faringe/metabolismo , Feromonas , Animales , Transporte Biológico , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Ácidos Grasos/síntesis química , Ácidos Grasos/química , Ácidos Grasos/farmacología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Estructura Molecular , Faringe/efectos de los fármacos , Feromonas/síntesis química , Feromonas/química , Feromonas/farmacología
11.
PLoS One ; 2(10): e993, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17912370

RESUMEN

Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS) catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum) by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs), and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H) and a mixed competitive inhibitor EMDF ((7S,8S)-ethyl (7,8-methylene)-dihydroferulate) provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent lysine residue in other enzymes of the SDR family.


Asunto(s)
Eugenol/metabolismo , Ocimum basilicum/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Benzoquinonas/química , Sitios de Unión , Unión Competitiva , Catálisis , Cristalografía por Rayos X/métodos , Enlace de Hidrógeno , Isoflavonas/química , Lisina/química , Modelos Químicos , Conformación Molecular , NADP/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , UDPglucosa 4-Epimerasa/química
12.
Proc Natl Acad Sci U S A ; 103(26): 10128-33, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16782809

RESUMEN

Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food preservation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the enzymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glandular trichomes of sweet basil (Ocimum basilicum), which synthesize and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol. Petunia (Petunia hybrida cv. Mitchell) flowers, which emit large amounts of isoeugenol, possess an enzyme homologous to the basil eugenol-forming enzyme that also uses coniferyl acetate and NADPH as substrates but catalyzes the formation of isoeugenol. The basil and petunia phenylpropene-forming enzymes belong to a structural family of NADPH-dependent reductases that also includes pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase.


Asunto(s)
Eugenol/análogos & derivados , Eugenol/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Ocimum basilicum/enzimología , Petunia/enzimología , Proteínas de Plantas/metabolismo , Especias , Ésteres/metabolismo , Eugenol/química , Genes de Plantas/genética , Hidrocarburos Aromáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Ocimum basilicum/genética , Petunia/genética , Fenoles/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA