Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Drug Dev Res ; 80(5): 566-572, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30893501

RESUMEN

There is an urgent need for new treatments effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. The 8-hydroxyquinoline series is a privileged scaffold with anticancer, antifungal, and antibacterial activities. We conducted a structure-activity relationship study of the series regarding its antitubercular activity using 26 analogs. The 8-hydroxyquinolines showed good activity against M. tuberculosis, with minimum inhibitory concentrations (MIC90) of <5 µM for some analogs. Small substitutions at C5 resulted in the most potent activity. Substitutions at C2 generally decreased potency, although a sub-family of 2-styryl-substituted analogs retained activity. Representative compounds demonstrated bactericidal activity against replicating M. tuberculosis with >4 log kill at 10× MIC over 14 days. The majority of the compounds demonstrated cytotoxicity (IC50 of <100 µM). Further development of this series as antitubercular agents should address the cytotoxicity liability. However, the 8-hydroxyquinoline series represents a useful tool for chemical genomics to identify novel targets in M. tuberculosis.


Asunto(s)
Antituberculosos/síntesis química , Hidroxiquinolinas/síntesis química , Mycobacterium tuberculosis/crecimiento & desarrollo , Oxiquinolina/análogos & derivados , Animales , Antituberculosos/química , Antituberculosos/farmacología , Chlorocebus aethiops , Células Hep G2 , Humanos , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Células Vero
2.
Antimicrob Agents Chemother ; 60(6): 3608-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27044545

RESUMEN

Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells.


Asunto(s)
Antituberculosos/farmacología , Ácido Butírico/metabolismo , Medios de Cultivo/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antituberculosos/química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Medios de Cultivo/química , Glucosa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Isoniazida/farmacología , Kanamicina/farmacología , Levofloxacino/farmacología , Redes y Vías Metabólicas/fisiología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Oxadiazoles/química , Bibliotecas de Moléculas Pequeñas/química , Especificidad de la Especie , Relación Estructura-Actividad , Células Vero
3.
J Negat Results Biomed ; 14: 4, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25881065

RESUMEN

BACKGROUND: Tuberculosis (TB) caused by Mycobacterium tuberculosis is the leading cause of death from a bacterial infection. The 4-aminopiperidine (PIP) series has been reported as having anti-bacterial activity against M. tuberculosis. We explored this series for its potential to inhibit aerobic growth of M. tuberculosis. We examined substitution at the N-1 position and C-4 position of the piperidine and modifications of the piperidine moiety systematically to delineate structure-activity relationships influencing potency. Compounds were tested for growth-inhibitory activity against virulent M. tuberculosis. A selected set of compounds were also tested for its activity against Staphylococcus aureus. RESULTS: The compound with a norbornenylmethyl substituent at the N-1 position and N-benzyl-N-phenethylamine at the C-4 position of the piperidine (1) was the only active compound with a minimum inhibitory concentration (MIC) of 10 µM against M. tuberculosis. Compounds were not active against S. aureus. CONCLUSIONS: We were unable to derive any other analogs with MIC < 20 µM against M. tuberculosis. Therefore we conclude that the lack of activity is a liability in this series precluding it from further development.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/química , Piperidinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Chlorocebus aethiops , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/fisiología , Staphylococcus aureus/fisiología , Relación Estructura-Actividad , Células Vero
4.
Bioorg Med Chem ; 22(24): 6965-79, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25456390

RESUMEN

The 2,4-diaminoquinazoline class of compounds has previously been identified as an effective inhibitor of Mycobacterium tuberculosis growth. We conducted an extensive evaluation of the series for its potential as a lead candidate for tuberculosis drug discovery. Three segments of the representative molecule N-(4-fluorobenzyl)-2-(piperidin-1-yl)quinazolin-4-amine were examined systematically to explore structure-activity relationships influencing potency. We determined that the benzylic amine at the 4-position, the piperidine at 2-position and the N-1 (but not N-3) are key activity determinants. The 3-deaza analog retained similar activity to the parent molecule. Biological activity was not dependent on iron or carbon source availability. We demonstrated through pharmacokinetic studies in rats that good in vivo compound exposure is achievable. A representative compound demonstrated bactericidal activity against both replicating and non-replicating M. tuberculosis. We isolated and sequenced M. tuberculosis mutants resistant to this compound and observed mutations in Rv3161c, a gene predicted to encode a dioxygenase, suggesting that the compound may act as a pro-drug.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Quinazolinas/química , Quinazolinas/farmacología , Animales , Antituberculosos/química , Antituberculosos/farmacocinética , Farmacorresistencia Bacteriana/efectos de los fármacos , Semivida , Pruebas de Sensibilidad Microbiana , Quinazolinas/síntesis química , Quinazolinas/farmacocinética , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
5.
Sci Rep ; 12(1): 14879, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050506

RESUMEN

We performed a high-throughput phenotypic whole cell screen of Mycobacterium tuberculosis against a diverse chemical library of approximately 100,000 compounds from the AbbVie corporate collection and identified 24 chemotypes with anti-tubercular activity. We selected two series for further exploration and conducted structure-activity relationship studies with new analogs for the 4-phenyl piperidines (4PP) and phenylcyclobutane carboxamides (PCB). Strains with mutations in MmpL3 demonstrated resistance to both compound series. We isolated resistant mutants for the two series and found mutations in MmpL3. These data suggest that MmpL3 is the target, or mechanism of resistance for both series.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo
6.
PLoS One ; 14(1): e0205479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30650074

RESUMEN

Tuberculosis is a disease of global importance for which novel drugs are urgently required. We developed a whole-cell phenotypic screen which can be used to identify inhibitors of Mycobacterium tuberculosis growth. We used recombinant strains of virulent M. tuberculosis which express far-red fluorescent reporters and used fluorescence to monitor growth in vitro. We optimized our high throughput assays using both 96-well and 384-well plates; both formats gave assays which met stringent reproducibility and robustness tests. We screened a compound set of 1105 chemically diverse compounds previously shown to be active against M. tuberculosis and identified primary hits which showed ≥ 90% growth inhibition. We ranked hits and identified three chemical classes of interest-the phenoxyalkylbenzamidazoles, the benzothiophene 1-1 dioxides, and the piperidinamines. These new compound classes may serve as starting points for the development of new series of inhibitors that prevent the growth of M. tuberculosis. This assay can be used for further screening, or could easily be adapted to other strains of M. tuberculosis.


Asunto(s)
Antituberculosos/farmacología , Desarrollo de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Fluorescencia , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/genética , Reproducibilidad de los Resultados , Rifampin/química , Rifampin/farmacología , Proteína Fluorescente Roja
7.
Biol Methods Protoc ; 3(1): bpy009, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197930

RESUMEN

There is a pressing need to develop novel anti-tubercular drugs. High-throughput phenotypic screening yields chemical series that inhibit bacterial growth. Target identification for such series is challenging, but necessary for optimization of target engagement and the development of series into clinical drugs. We constructed a library of recombinant Mycobacterium tuberculosis strains each expressing a single protein from an inducible promoter as a tool for target identification. The library of 1733 clones was arrayed in 96-well plates for rapid screening and monitoring growth. The library contains the majority of the annotated essential genes as well as genes involved in cell wall and fatty acid biosynthesis, virulence factors, regulatory proteins, efflux, and respiration pathways. We evaluated the growth kinetics and plasmid stability over three passages for each clone in the library. We determined expression levels (mRNA and/or protein) in 396 selected clones. We screened the entire library and identified the Alr-expressing clone as the only recombinant strain, which grew in the presence of d-cycloserine (DCS). We confirmed that the Alr-expressing clone was resistant to DCS (7-fold shift in minimum inhibitory concentration). The library represents a new tool that can be used to screen for compound resistance and other phenotypes.

8.
BMC Res Notes ; 11(1): 416, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954459

RESUMEN

OBJECTIVE: Our aim was to identify natural products with anti-tubercular activity. RESULTS: A set of ~ 500 purified natural product compounds was screened for inhibition against the human pathogen Mycobacterium tuberculosis. A series of cyclic hexapeptides with anti-tubercular activity was identified. Five analogs from a set of sixteen closely related compounds were active, with minimum inhibitory concentrations ranging from 2.3 to 8.9 µM. Eleven structural analogs had no significant activity (MIC > 20 µM) demonstrating structure activity relationship. Sequencing of resistant mutant isolates failed to identify changes accounting for the resistance phenotype.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oligopéptidos/farmacología , Productos Biológicos , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
9.
PLoS One ; 12(8): e0184107, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850614

RESUMEN

Nitazoxanide (NTZ) is an anti-parasitic drug that also has activity against bacteria, including Mycobacterium tuberculosis. Our data using both radiorespirometry and live-dead staining in vitro demonstrate that NTZ similarly has bactericidal against M. leprae. Further, gavage of M. leprae-infected mice with NTZ at 25mg/kg provided anti-mycobacterial activity equivalent to rifampicin (RIF) at 10 mg/kg. This suggests that NTZ could be considered for leprosy treatment.


Asunto(s)
Antibacterianos/farmacología , Lepra/tratamiento farmacológico , Mycobacterium leprae/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/uso terapéutico , Lepra/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Nitrocompuestos , Tiazoles/uso terapéutico
10.
ACS Omega ; 2(9): 5873-5890, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023755

RESUMEN

Nitazoxanide has antiparasitic and antibiotic activities including activity against Mycobacterium tuberculosis. We prepared and evaluated a set of its analogues to determine the structure-activity relationship, and identified several amide- and urea-based analogues with low micromolar activity against M. tuberculosis in vitro. Pharmacokinetics in the rat suggested a path forward to obtain bioavailable compounds. The series had a good microbiological profile with bactericidal activity in vitro against replicating and nonreplicating M. tuberculosis. Analogues had limited activity against other Gram-positive bacteria but no activity against Gram-negative bacteria. Our studies identified the key liability in this series as cytotoxicity. Future work concentrating on identifying the target(s) could assist in removing activity against eukaryotic cells.

11.
PLoS One ; 11(5): e0155209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171280

RESUMEN

The 2-aminothiazole series has anti-bacterial activity against the important global pathogen Mycobacterium tuberculosis. We explored the nature of the activity by designing and synthesizing a large number of analogs and testing these for activity against M. tuberculosis, as well as eukaryotic cells. We determined that the C-2 position of the thiazole can accommodate a range of lipophilic substitutions, while both the C-4 position and the thiazole core are sensitive to change. The series has good activity against M. tuberculosis growth with sub-micromolar minimum inhibitory concentrations being achieved. A representative analog was selective for mycobacterial species over other bacteria and was rapidly bactericidal against replicating M. tuberculosis. The mode of action does not appear to involve iron chelation. We conclude that this series has potential for further development as novel anti-tubercular agents.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Tiazoles/síntesis química , Tiazoles/farmacología , Animales , Antituberculosos/química , Quelantes del Hierro/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Células Vero
12.
ChemistryOpen ; 4(3): 342-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26246997

RESUMEN

This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure-activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs.

13.
J Med Chem ; 58(18): 7273-85, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26295286

RESUMEN

We conducted an evaluation of the phenoxyalkylbenzimidazole series based on the exemplar 2-ethyl-1-(3-phenoxypropyl)-1H-benzo[d]imidazole for its antitubercular activity. Four segments of the molecule were examined systematically to define a structure-activity relationship with respect to biological activity. Compounds had submicromolar activity against Mycobacterium tuberculosis; the most potent compound had a minimum inhibitory concentration (MIC) of 52 nM and was not cytotoxic against eukaryotic cells (selectivity index = 523). Compounds were selective for M. tuberculosis over other bacterial species, including the closely related Mycobacterium smegmatis. Compounds had a bacteriostatic effect against aerobically grown, replicating M. tuberculosis, but were bactericidal against nonreplicating bacteria. Representative compounds had moderate to high permeability in MDCK cells, but were rapidly metabolized in rodents and human liver microsomes, suggesting the possibility of rapid in vivo hepatic clearance mediated by oxidative metabolism. These results indicate that the readily synthesized phenoxyalkylbenzimidazoles are a promising class of potent and selective antitubercular agents, if the metabolic liability can be solved.


Asunto(s)
Antituberculosos/química , Bencimidazoles/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Chlorocebus aethiops , Simulación por Computador , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Permeabilidad , Ratas , Relación Estructura-Actividad , Células Vero
14.
ACS Infect Dis ; 1(2): 85-90, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25984566

RESUMEN

Zolpidem (Ambien, 1) is an imidazo[1,2-a]pyridine-3-acetamide and an approved drug for the treatment of insomnia. As medicinal chemists enamored by how structure imparts biological function, we found it to have strikingly similar structure to the antitubercular imidazo[1,2-a]pyridine-3-carboxyamides. Zolpidem was found to have antituberculosis activity (MIC of 10-50 µM) when screened against replicating Mycobacterium tuberculosis (Mtb) H37Rv. Manipulation of the Zolpidem structure, notably, to structural isomers ("anagrams"), attains remarkably improved potency (5, MIC of 0.004 µM) and impressive potency against clinically relevant drug-sensitive, multi- and extensively drug-resistant Mtb strains (MIC < 0.03 µM). Zolpidem anagrams and analogues were synthesized and evaluated for their antitubercular potency, toxicity, and spectrum of activity against nontubercular mycobacteria and Gram-positive and Gram-negative bacteria. These efforts toward the rational design of isomeric anagrams of a well-known sleep aid underscore the possibility that further optimization of the imidazo[1,2-a]pyridine core may well "put TB to rest".

15.
PeerJ ; 2: e612, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25320680

RESUMEN

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3-8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1-5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.

16.
PLoS One ; 8(4): e60531, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593234

RESUMEN

Tuberculosis is a serious global health problem caused by the bacterium Mycobacterium tuberculosis. There is an urgent need for discovery and development of new treatments, but this can only be accomplished through rapid and reproducible M. tuberculosis assays designed to identify potent inhibitors. We developed an automated 96-well assay utilizing a recombinant strain of M. tuberculosis expressing a far-red fluorescent reporter to determine the activity of novel compounds; this allowed us to measure growth by monitoring both optical density and fluorescence. We determined that optical density and fluorescence were correlated with cell number during logarithmic phase growth. Fluorescence was stably maintained without antibiotic selection over 5 days, during which time cells remained actively growing. We optimized parameters for the assay, with the final format being 5 days' growth in 96-well plates in the presence of 2% w/v DMSO. We confirmed reproducibility using rifampicin and other antibiotics. The dual detection method allows for a reproducible calculation of the minimum inhibitory concentration (MIC), at the same time detecting artefacts such as fluorescence quenching or compound precipitation. We used our assay to confirm anti-tubercular activity and establish the structure activity relationship (SAR) around the imidazo[1,2-a]pyridine-3-carboxamides, a promising series of M. tuberculosis inhibitors.


Asunto(s)
Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
17.
ACS Med Chem Lett ; 4(7): 675-679, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23930153

RESUMEN

A set of fourteen imidazo[1,2-a]pyridine-3-carboxamides was synthesized and screened against Mycobacterium tuberculosis H37Rv. The minimum inhibitory concentrations of twelve of these agents were ≤ 1 µM against replicating bacteria and five compounds (9, 12, 16, 17 and 18) had MIC values ≤ 0.006 µM. Compounds 13 and 18 were screened against a panel of MDR and XDR drug resistant clinical Mtb strains with the potency of 18 surpassing that of clinical candidate PA-824 by nearly 10 fold. The in vivo pharmacokinetics of compounds 13 and 18 were evaluated in male mice by oral (PO) and intravenous (IV) routes. These results indicate that readily synthesized imidazo[1,2-a]pyridine-3-carboxamides are an exciting new class of potent, selective anti-TB agents that merit additional development opportunities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA