Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Emerg Med ; 20(1): 84, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126858

RESUMEN

BACKGROUND: Applied Research Associates (ARA) and the United States Army Institute of Surgical Research (USAISR) have been developing a tablet-based simulation environment for burn wound assessment and burn shock resuscitation. This application aims to supplement the current gold standard in burn care education, the Advanced Burn Life Support (ABLS) curriculum. RESULTS: Subject matter experts validate total body surface area (TBSA) identification and analysis and show that the visual fidelity of the tablet virtual patients is consistent with real life thermal injuries. We show this by noting that the error between their burn mapping and the actual patient burns was sufficiently less than that of a random sample population. Statistical analysis is used to confirm this hypothesis. In addition a full body physiology model developed for this project is detailed. Physiological results, and responses to standard care treatment, are detailed and validated. Future updates will include training modules that leverage this model. CONCLUSION: We have created an accurate, whole-body model of burn TBSA training experience in Unreal 4 on a mobile platform, provided for free to the medical community. We hope to provide learners with more a realistic experience and with rapid feedback as they practice patient assessment, intervention, and reassessment.


Asunto(s)
Quemaduras/terapia , Computadoras de Mano , Medicina de Emergencia/educación , Medicina Militar/educación , Resucitación/educación , Entrenamiento Simulado , Superficie Corporal , Humanos , Estados Unidos
2.
Commun Med (Lond) ; 4(1): 114, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866911

RESUMEN

BACKGROUND: Opioid use in the United States and abroad is an endemic part of society with yearly increases in overdose rates and deaths. In response, the use of the safe and effective reversal agent, naloxone, is being fielded and used by emergency medical technicians at a greater rate. There is evidence that repeated dosing of a naloxone nasal spray is becoming more common. Despite this we lack repeated dosing guidelines as a function of the amount of opiate the patient has taken. METHODS: To measure repeat dosing guidelines, we construct a whole-body model of the pharmacokinetics and dynamics of an opiate, fentanyl on respiratory depression. We then construct a model of nasal deposition and administration of naloxone to investigate repeat dosing requirements for large overdose scenarios. We run a single patient through multiple goal directed resuscitation protocols and measure total naloxone administered. RESULTS: Here we show that naloxone is highly effective at reversing the respiratory symptoms of the patient and recommend dosing requirements as a function of the fentanyl amount administered. We show that for increasing doses of fentanyl, naloxone requirements also increase. The rescue dose displays a nonlinear response to the initial opioid dose. This nonlinear response is largely logistic with three distinct phases: onset, rapid acceleration, and a plateau period for doses above 1.2 mg. CONCLUSIONS: This paper investigates the total naloxone dose needed to properly reverse respiratory depression associated with fentanyl overdose. We show that the current guidelines for a rescue dose may be much lower than required.


Opioids such as fentanyl are a type of drug that reduce pain. However, the overdose of opioids causes severe breathing issues that can lead to death. Overdose of opioids is an increasing problem across the globe, particularly among people with opioid use disorder. To prevent death, first responders can administer a drug called naloxone that rapidly reverses the effects of opioids. However, the optimum amount of naloxone to administer is unclear. We use a mathematical model to investigate the effect of administering different amounts of naloxone during fentanyl overdose. Our findings suggest that the amount of naloxone to administer that is currently usually administered may be insufficient. Further research should enable naloxone usage guidelines to be optimized, which could improve survival following opioid overdose.

3.
JMIR Med Educ ; 10: e50705, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300696

RESUMEN

BACKGROUND: Using virtual patients, facilitated by natural language processing, provides a valuable educational experience for learners. Generating a large, varied sample of realistic and appropriate responses for virtual patients is challenging. Artificial intelligence (AI) programs can be a viable source for these responses, but their utility for this purpose has not been explored. OBJECTIVE: In this study, we explored the effectiveness of generative AI (ChatGPT) in developing realistic virtual standardized patient dialogues to teach prenatal counseling skills. METHODS: ChatGPT was prompted to generate a list of common areas of concern and questions that families expecting preterm delivery at 24 weeks gestation might ask during prenatal counseling. ChatGPT was then prompted to generate 2 role-plays with dialogues between a parent expecting a potential preterm delivery at 24 weeks and their counseling physician using each of the example questions. The prompt was repeated for 2 unique role-plays: one parent was characterized as anxious and the other as having low trust in the medical system. Role-play scripts were exported verbatim and independently reviewed by 2 neonatologists with experience in prenatal counseling, using a scale of 1-5 on realism, appropriateness, and utility for virtual standardized patient responses. RESULTS: ChatGPT generated 7 areas of concern, with 35 example questions used to generate role-plays. The 35 role-play transcripts generated 176 unique parent responses (median 5, IQR 4-6, per role-play) with 268 unique sentences. Expert review identified 117 (65%) of the 176 responses as indicating an emotion, either directly or indirectly. Approximately half (98/176, 56%) of the responses had 2 or more sentences, and half (88/176, 50%) included at least 1 question. More than half (104/176, 58%) of the responses from role-played parent characters described a feeling, such as being scared, worried, or concerned. The role-plays of parents with low trust in the medical system generated many unique sentences (n=50). Most of the sentences in the responses were found to be reasonably realistic (214/268, 80%), appropriate for variable prenatal counseling conversation paths (233/268, 87%), and usable without more than a minimal modification in a virtual patient program (169/268, 63%). CONCLUSIONS: Generative AI programs, such as ChatGPT, may provide a viable source of training materials to expand virtual patient programs, with careful attention to the concerns and questions of patients and families. Given the potential for unrealistic or inappropriate statements and questions, an expert should review AI chat outputs before deploying them in an educational program.


Asunto(s)
Nacimiento Prematuro , Educación Prenatal , Femenino , Embarazo , Recién Nacido , Humanos , Inteligencia Artificial , Escolaridad , Consejo
4.
Math Biosci Eng ; 18(4): 3227-3257, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-34198383

RESUMEN

Vascular endothelial growth factor (VEGF) is a key protein involved in the process of angiogenesis. VEGF is of particular interest after a traumatic brain injury (TBI), as it re-establishes the cerebral vascular network in effort to allow for proper cerebral blood flow and thereby oxygenation of damaged brain tissue. For this reason, angiogenesis is critical in the progression and recovery of TBI patients in the days and weeks post injury. Although well established experimental work has led to advances in our understanding of TBI and the progression of angiogenisis, many constraints still exist with existing methods, especially when considering patient progression in the days following injury. To better understand the healing process on the proposed time scales, we develop a computational model that quickly simulates vessel growth and recovery by coupling VEGF and its interactions with its associated receptors to a physiologically inspired fractal model of the microvascular re-growth. We use this model to clarify the role that diffusivity, receptor kinetics and location of the TBI play in overall blood volume restoration in the weeks post injury and show that proper therapeutic angiogenesis, or vasculogenic therapies, could speed recovery of the patient as a function of the location of injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Biológicos , Neovascularización Fisiológica , Circulación Cerebrovascular , Simulación por Computador , Humanos , Factor A de Crecimiento Endotelial Vascular
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 261-264, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31945891

RESUMEN

We have created a model of systemic burn pathophysiology by incorporating a mathematical model of acute inflammation within the BioGears Engine. This model produces outputs consistent with burns of varying severities and leverages existing BioGears functionality to simulate the effect of treatment on virtual patient outcome. The model performs well for standard resuscitation scenarios and we thus expect it to be useful for educational and training purposes.


Asunto(s)
Quemaduras , Fluidoterapia , Humanos , Inflamación , Resucitación
6.
Front Physiol ; 10: 1321, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681022

RESUMEN

Sepsis is a debilitating condition associated with a high mortality rate that greatly strains hospital resources. Though advances have been made in improving sepsis diagnosis and treatment, our understanding of the disease is far from complete. Mathematical modeling of sepsis has the potential to explore underlying biological mechanisms and patient phenotypes that contribute to variability in septic patient outcomes. We developed a comprehensive, whole-body mathematical model of sepsis pathophysiology using the BioGears Engine, a robust open-source virtual human modeling project. We describe the development of a sepsis model and the physiologic response within the BioGears framework. We then define and simulate scenarios that compare sepsis treatment regimens. As such, we demonstrate the utility of this model as a tool to augment sepsis research and as a training platform to educate medical staff.

7.
CPT Pharmacometrics Syst Pharmacol ; 8(1): 12-25, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30411537

RESUMEN

BioGears is an open-source, lumped parameter, full-body human physiology engine. Its purpose is to provide realistic and comprehensive simulations for medical training, research, and education. BioGears incorporates a physiologically based pharmacokinetic/pharmacodynamic (PK/PD) model that is designed to be applicable to a diversity of drug classes and patients and is extensible to future drugs. In addition, BioGears also supports drug interactions with various patient insults and interventions allowing for a realistic research framework and accurate dose-patient responses. This tutorial will demonstrate how the generic BioGears PK/PD model can be extended to a new substance for prediction of drug administration outcomes.

8.
Integr Comp Biol ; 55(5): 901-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26337187

RESUMEN

This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Músculo Esquelético/fisiología , Animales , Fenómenos Biomecánicos , Movimiento , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA