Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(29): 11541-11553, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37418540

RESUMEN

A series of heteroleptic bipyridine Pd(II) complexes based on 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian) or 1,2-bis[(2,4,6-trimethylphenyl)imino]acenaphthene (tmp-Bian) were prepared. All complexes were fully characterized by spectrochemical methods, and their crystal structures were confirmed by X-ray diffraction analysis. The 72 h stability of heteroleptic bipyridine Pd(II) complexes with Bian ligands under physiological conditions was investigated using 1H NMR spectroscopy. The anticancer activity of all complexes was assessed in a panel of cancer cell lines in comparison with uncoordinated ligands and clinically used drugs cisplatin and doxorubicin. The ability of the complexes to bind DNA was investigated using several methods, including EtBr replacement assay, density functional theory calculations, circular dichroism spectroscopy, DNA gel electrophoresis, and TUNEL assay. The electrochemical activity of all complexes and the uncoordinated ligands was studied using cyclic voltammetry, and reactive oxygen species production in cancer cells was investigated using confocal microscopy. Heteroleptic bipyridine PdII-Bian complexes were cytotoxic in a low micromolar concentration range and showed some selectivity toward cancer cells in comparison with noncancerous MRC-5 lung fibroblasts.


Asunto(s)
Compuestos Heterocíclicos , Paladio , Paladio/farmacología , Acenaftenos/química , Acenaftenos/farmacología , Ligandos , ADN , Oxidación-Reducción
2.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445638

RESUMEN

A series of iridium complexes with bis(diisopropylphenyl)iminoacenaphtene (dpp-bian) ligands, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3), were prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis and cyclic voltammetry (CV). The structures of 1-3 feature a square planar backbone consisting of two C = C π-bonds of 1,5-cyclooctadiene (cod) and two nitrogen atoms of dpp-bian supplemented with a chloride ion (for 1) or a NO group (for 2) to complete a square-pyramidal geometry. In the nitrosyl complex 2, the Ir-N-O group has a bent geometry (the angle is 125°). The CV data for 1 and 3 show two reversible waves between 0 and -1.6 V (vs. Ag/AgCl). Reversible oxidation was also found at E1/2 = 0.60 V for 1. Magnetochemical measurements for 2 in a range from 1.77 to 300 K revealed an increase in the magnetic moment with increasing temperature up to 1.2 µB (at 300 K). Nitrosyl complex 2 is unstable in solution and loses its NO group to yield [Ir(cod)(dpp-bian)](BF4) (3). A paramagnetic complex, [Ir(cod)(dpp-bian)](BF4)2 (4), was also detected in the solution of 2 as a result of its decomposition. The EPR spectrum of 4 in CH2Cl2 is described by the spin Hamiltonian H = gßHS with S = 1/2 and gxx = gyy = 2.393 and gzz = 1.88, which are characteristic of the low-spin 5d7-Ir(II) state. DFT calculations were carried out in order to rationalize the experimental results.


Asunto(s)
Iridio , Iridio/química , Ligandos , Cristalografía por Rayos X , Oxidación-Reducción , Análisis Espectral
3.
Inorg Chem ; 61(4): 2105-2118, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35029379

RESUMEN

A series of heteroleptic square-planar Pt and Pd complexes with bis(diisopropylphenyl) iminoacenaphtene (dpp-Bian) and Cl, 1,3-dithia-2-thione-4,5-dithiolate (dmit), or 1,3-dithia-2-thione-4,5-diselenolate (dsit) ligands have been prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis, and cyclic voltammetry (CV). The intermolecular noncovalent interactions in the crystal structures were assessed by density functional theory (DFT) calculations. The anticancer activity of Pd complexes in breast cancer cell lines was limited by their solubility. Pd(dpp-Bian) complexes with dmit and dsit ligands as well as an uncoordinated dpp-Bian ligand were devoid of cytotoxicity, while the [Pd(dpp-Bian)Cl2] complex was cytotoxic. On the contrary, all Pt(dpp-Bian) complexes demonstrated anticancer activity in a low micromolar concentration range, which was 8-20 times higher than the activity of cisplatin, and up to 2.5-fold selectivity toward cancer cells over healthy fibroblasts. The presence of a redox-active dpp-Bian ligand in Pt and Pd complexes resulted in the induction of reactive oxygen species (ROS) in cancer cells. In addition, these complexes were able to intercalate into DNA, indicating the dual mechanism of action.


Asunto(s)
Cisplatino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA