RESUMEN
With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.
Asunto(s)
Antituberculosos , Inhibidores de Anhidrasa Carbónica , Diseño de Fármacos , Hidrazinas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Rodanina , Rodanina/farmacología , Rodanina/síntesis química , Rodanina/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Humanos , Hidrazinas/farmacología , Hidrazinas/síntesis química , Hidrazinas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismoRESUMEN
The escalating severity of the menace posed by bacterial resistance has rendered the existing antibiotics less effective, thus necessitating the discovery of new antibacterial agents. The current study reports the exploration of substituted N-pyridinylaminonaphthols produced by a straightforward, one-pot multicomponent reaction process as antibacterial agents. The synthesized derivatives were assessed in vitro for their antibacterial properties against a panel of bacterial pathogens. The analogs 4b, 4g, 4h, 4i, 4j, 4l, 4r, and 4t exhibited potent inhibitory activity with minimum inhibitory concentration (MIC) values of 1-2 µg/mL. Notably, 4b, 4l, and 4t displayed an excellent selectivity index. Additionally, they were active against the multidrug-resistant bacterial strains, with 4l exhibiting the best activity against methicillin-resistant Staphylococcus aureus and vancomycin resistant staphylococcus aureus with a MIC of 1 µg/mL. 4l showed synergism with gentamycin and showed bactericidal property in a concentration-dependent manner. Furthermore, the molecule 4l inhibited the DNA gyrase supercoiling activity. Absorption, distribution, metabolism, excretion/toxicity parameters and pharmacokinetic properties were assessed via in silico techniques, which elucidate the potential mode of action. These findings demonstrate the potential of the N-pyridinylaminonaphthol derivatives as antibacterial agents against multidrug-resistant S. aureus.