Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7937): 733-743, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289335

RESUMEN

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Asunto(s)
Neoplasias Colorrectales , Epigenoma , Genoma Humano , Mutación , Humanos , Adenoma/genética , Adenoma/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/genética , Cromatina/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Epigenoma/genética , Oncogenes/genética , Factores de Transcripción/metabolismo , Genoma Humano/genética , Interferones
2.
Nature ; 611(7937): 744-753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289336

RESUMEN

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Asunto(s)
Adaptación Fisiológica , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Fenotipo , Humanos , Adaptación Fisiológica/genética , Células Clonales/metabolismo , Células Clonales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Secuenciación del Exoma , Transcripción Genética
3.
Mod Pathol ; 37(5): 100465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460675

RESUMEN

Primary cutaneous follicle center lymphoma (PCFCL) has an excellent prognosis using local treatment, whereas nodal follicular lymphoma (nFL), occasionally presenting with cutaneous spread, often requires systemic therapy. Distinction of the 2 diseases based on histopathology alone might be challenging. Copy number alterations (CNAs) have scarcely been explored on a genome-wide scale in PCFCL; however, they might serve as potential biomarkers during differential diagnosis and risk stratification. Low-coverage whole-genome sequencing is a robust, high-throughput method for genome-wide copy number profiling. In this study, we analyzed 28 PCFCL samples from 20 patients and compared the copy number profiles with a cohort of diagnostic samples of 64 nFL patients. Although the copy number profile of PCFCL was similar to that of nFL, PCFCL lacked amplifications of 18q, with the frequency peaking at 18q21.33 in nFL cases involving the BCL2 locus (PCFCL: 5.0% vs nFL: 31.3%, P = .018, Fisher exact test). Development of distant cutaneous spread was significantly associated with higher genomic instability including the proportion of genome altered (0.02 vs 0.13, P = .033) and number of CNAs (2 vs 9 P = .017), as well as the enrichment of 2p22.2-p15 amplification involving REL and XPO1 (6.3% vs 60.0%, P = .005), 3q23-q24 amplification (0.0% vs 50.0%, P = .004), 6q16.1-q23.3 deletion (6.3% vs 50.0%, P = .018), and 9p21.3 deletion covering CDKN2A and CDKN2B loci (0.0% vs 40.0%, P = .014, all Fisher exact test) in PCFCL. Analysis of sequential tumor samples in 2 cases harboring an unfavorable clinical course pointed to the acquisition of 2p amplification in the earliest common progenitor underlining its pivotal role in malignant transformation. By performing genome-wide copy number profiling on the largest patient cohort to date, we identified distinctive CNA alterations conceivably facilitating the differential diagnosis of PCFCL and secondary cutaneous involvement of nFL and potentially aiding the risk stratification of patients with PCFCL in the future.


Asunto(s)
Variaciones en el Número de Copia de ADN , Linfoma Folicular , Neoplasias Cutáneas , Secuenciación Completa del Genoma , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patología , Linfoma Folicular/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Diagnóstico Diferencial , Pronóstico , Adulto , Anciano de 80 o más Años , Biomarcadores de Tumor/genética
4.
PLoS Comput Biol ; 19(3): e1010952, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913406

RESUMEN

The signature of early cancer dynamics on the spatial arrangement of tumour cells is poorly understood, and yet could encode information about how sub-clones grew within the expanding tumour. Novel methods of quantifying spatial tumour data at the cellular scale are required to link evolutionary dynamics to the resulting spatial architecture of the tumour. Here, we propose a framework using first passage times of random walks to quantify the complex spatial patterns of tumour cell population mixing. First, using a simple model of cell mixing we demonstrate how first passage time statistics can distinguish between different pattern structures. We then apply our method to simulated patterns of mutated and non-mutated tumour cell population mixing, generated using an agent-based model of expanding tumours, to explore how first passage times reflect mutant cell replicative advantage, time of emergence and strength of cell pushing. Finally, we explore applications to experimentally measured human colorectal cancer, and estimate parameters of early sub-clonal dynamics using our spatial computational model. We infer a wide range of sub-clonal dynamics, with mutant cell division rates varying between 1 and 4 times the rate of non-mutated cells across our sample set. Some mutated sub-clones emerged after as few as 100 non-mutant cell divisions, and others only after 50,000 divisions. The majority were consistent with boundary driven growth or short-range cell pushing. By analysing multiple sub-sampled regions in a small number of samples, we explore how the distribution of inferred dynamics could inform about the initial mutational event. Our results demonstrate the efficacy of first passage time analysis as a new methodology in spatial analysis of solid tumour tissue, and suggest that patterns of sub-clonal mixing can provide insights into early cancer dynamics.


Asunto(s)
Evolución Clonal , Neoplasias Colorrectales , Humanos , Mutación , División Celular , Neoplasias Colorrectales/genética
5.
J Pathol ; 257(4): 501-512, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35415852

RESUMEN

The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Colon , Neoplasias , Linaje de la Célula , Humanos , Mutación , Reino Unido
6.
J Pathol ; 251(4): 440-451, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32476144

RESUMEN

Regular menstrual shedding and repair of the endometrial functionalis is unique to humans and higher-order primates. The current consensus postulates endometrial glands to have a single-tubular architecture, where multi-potential stem cells reside in the blind-ending glandular-bases. Utilising fixed samples from patients, we have studied the three-dimensional (3D) micro-architecture of the human endometrium. We demonstrate that some non-branching, single, vertical functionalis glands originate from a complex horizontally interconnecting network of basalis glands. The existence of a multipotent endometrial epithelial stem cell capable of regenerating the entire complement of glandular lineages was demonstrated by in vivo lineage tracing, using naturally occurring somatic mitochondrial DNA mutations as clonal markers. Vertical tracking of mutated clones showed that at least one stem-cell population resides in the basalis glands. These novel findings provide insight into the efficient and scar-less regenerative potential of the human endometrium. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Endometrio/ultraestructura , Biomarcadores/metabolismo , Diferenciación Celular , Endometrio/fisiología , Femenino , Humanos , Imagenología Tridimensional , Menstruación , Células Madre/fisiología , Células Madre/ultraestructura
7.
Gut ; 68(11): 1986-1993, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30872394

RESUMEN

OBJECTIVE: The crypt population in the human intestine is dynamic: crypts can divide to produce two new daughter crypts through a process termed crypt fission, but whether this is balanced by a second process to remove crypts, as recently shown in mouse models, is uncertain. We examined whether crypt fusion (the process of two neighbouring crypts fusing into a single daughter crypt) occurs in the human colon. DESIGN: We used somatic alterations in the gene cytochrome c oxidase (CCO) as lineage tracing markers to assess the clonality of bifurcating colon crypts (n=309 bifurcating crypts from 13 patients). Mathematical modelling was used to determine whether the existence of crypt fusion can explain the experimental data, and how the process of fusion influences the rate of crypt fission. RESULTS: In 55% (21/38) of bifurcating crypts in which clonality could be assessed, we observed perfect segregation of clonal lineages to the respective crypt arms. Mathematical modelling showed that this frequency of perfect segregation could not be explained by fission alone (p<10-20). With the rates of fission and fusion taken to be approximately equal, we then used the distribution of CCO-deficient patch size to estimate the rate of crypt fission, finding a value of around 0.011 divisions/crypt/year. CONCLUSIONS: We have provided the evidence that human colonic crypts undergo fusion, a potential homeostatic process to regulate total crypt number. The existence of crypt fusion in the human colon adds a new facet to our understanding of the highly dynamic and plastic phenotype of the colonic epithelium.


Asunto(s)
Focos de Criptas Aberrantes/patología , Colon/patología , Homeostasis/fisiología , Mucosa Intestinal/patología , Adulto , Anciano , Técnicas de Cultivo de Célula , Fusión Celular , Complejo IV de Transporte de Electrones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos
8.
Gut ; 68(6): 985-995, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29991641

RESUMEN

OBJECTIVE: IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. DESIGN: Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. RESULTS: 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated 'catastrophic' CNA increase. CONCLUSIONS: Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.


Asunto(s)
Transformación Celular Neoplásica/patología , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transformación Celular Neoplásica/genética , Colonoscopía/métodos , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple/genética , Medición de Riesgo , Índice de Severidad de la Enfermedad
9.
J Pathol ; 245(3): 283-296, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29604063

RESUMEN

Genomic instability, which is a hallmark of cancer, is generally thought to occur in the middle to late stages of tumourigenesis, following the acquisition of permissive molecular aberrations such as TP53 mutation or whole genome doubling. Tumours with somatic POLE exonuclease domain mutations are notable for their extreme genomic instability (their mutation burden is among the highest in human cancer), distinct mutational signature, lymphocytic infiltrate, and excellent prognosis. To what extent these characteristics are determined by the timing of POLE mutations in oncogenesis is unknown. Here, we have shown that pathogenic POLE mutations are detectable in non-malignant precursors of endometrial and colorectal cancer. Using genome and exome sequencing, we found that multiple driver mutations in POLE-mutant cancers show the characteristic POLE mutational signature, including those in genes conventionally regarded as initiators of tumourigenesis. In POLE-mutant cancers, the proportion of monoclonal predicted neoantigens was similar to that in other cancers, but the absolute number was much greater. We also found that the prominent CD8+ T-cell infiltrate present in POLE-mutant cancers was evident in their precursor lesions. Collectively, these data indicate that somatic POLE mutations are early, quite possibly initiating, events in the endometrial and colorectal cancers in which they occur. The resulting early onset of genomic instability may account for the striking immune response and excellent prognosis of these tumours, as well as their early presentation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma/genética , Antígenos de Neoplasias/genética , Neoplasias Colorrectales/genética , ADN Polimerasa II/genética , Neoplasias Endometriales/genética , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Adenocarcinoma/enzimología , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , ADN Polimerasa II/metabolismo , Bases de Datos Genéticas , Neoplasias Endometriales/enzimología , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/patología , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Microambiente Tumoral , Secuenciación Completa del Genoma
10.
Gastroenterology ; 153(6): 1555-1567.e15, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28859856

RESUMEN

BACKGROUND & AIMS: The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS: Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS: Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS: MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.


Asunto(s)
Duodeno/metabolismo , Gastrinas/metabolismo , Neuroglía/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neoplasias Duodenales/enzimología , Neoplasias Duodenales/genética , Neoplasias Duodenales/patología , Duodeno/efectos de los fármacos , Duodeno/patología , Gastrinoma/enzimología , Gastrinoma/genética , Gastrinoma/patología , Gastrinas/genética , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Hiperplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Proteolisis , Proteínas Proto-Oncogénicas/genética , Inhibidores de la Bomba de Protones/farmacología , Receptor de Colecistoquinina B/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Factores de Tiempo , Ubiquitinación
11.
Commun Dis Intell Q Rep ; 41(3): E209-E211, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29720065

RESUMEN

Tuberculosis (TB) remains a disease of high morbidity in Australia, with implications for both public health and the individual. Cost analyses is relevant for programmatic evaluation of TB. There is minimal published TB cost data in the Australian setting. Patients with drug sensitive active pulmonary TB (DS-PTB) and latent TB (LTBI) were enrolled in a single tertiary referral centre to evaluate healthcare provider costs. The median cost of treating drug susceptible pulmonary TB in this case series was 11,538 AUD. Approximately 50% of total costs is derived from inpatient hospitalisation bed days. In comparison, the average cost of managing latent TB was 582 AUD per completed course. We find the median provider cost of our DS-PTB treatment group comparable to costs from other regions globally with similar economic profiles. A program designed to detect and treat LTBI to prevent subsequent disease may be cost effective in appropriately selected patients and warrants further study.


Asunto(s)
Transmisión de Enfermedad Infecciosa de Profesional a Paciente , Tuberculosis Latente/diagnóstico , Tamizaje Masivo/organización & administración , Tuberculosis Pulmonar/diagnóstico , Anciano , Anciano de 80 o más Años , Femenino , Personal de Salud , Viviendas para Ancianos , Humanos , Ensayos de Liberación de Interferón gamma , Tuberculosis Latente/epidemiología , Tuberculosis Latente/transmisión , Masculino , Radiografías Pulmonares Masivas , Instituciones Residenciales , Prueba de Tuberculina , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/transmisión , Victoria/epidemiología
12.
Histopathology ; 69(2): 222-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26826706

RESUMEN

AIMS: Recent attempts to study MYC distribution in human samples have been confounded by a lack of agreement in immunohistochemical staining between antibodies targeting the N-terminus and those targeting the C-terminus of the MYC protein. The aim of this study was to use a novel in-situ hybridization (ISH) approach to detect MYC mRNA in clinically relevant samples, and thereby determine the reliability of MYC-targeting antibodies. METHODS AND RESULTS: We performed immunohistochemistry on human formalin-fixed paraffin embedded normal colon (n = 15), hyperplastic polyp (n = 4) and neoplastic colon samples (n = 55), using the N-terminally directed antibody Y69, and the C-terminally directed antibody 9E10. The MYC protein distributions were then compared with the location of MYC mRNA, determined by ISH. We found that the localization of MYC mRNA correlated well with the protein distribution determined with the N-terminally directed antibody Y69, and was also associated with expression of the proliferation marker Ki67. The protein distribution determined with the C-terminally directed antibody 9E10 was not always associated with MYC mRNA, Y69, or Ki67, and indeed often showed a reciprocal pattern of expression, with staining being strongest in non-proliferating cells. CONCLUSIONS: The observed discrepancy between the staining patterns suggests that the significance of 9E10 in immunohistochemical staining is currently uncertain, and therefore should be interpreted with caution.


Asunto(s)
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Neoplasias del Colon/metabolismo , Pólipos del Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adenocarcinoma/patología , Adenoma/patología , Anticuerpos Monoclonales , Colon/metabolismo , Colon/patología , Neoplasias del Colon/patología , Pólipos del Colon/patología , Neoplasias Colorrectales/patología , Humanos , Inmunohistoquímica , Hibridación in Situ , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
13.
J Pathol ; 229(4): 502-14, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23288692

RESUMEN

Classically, the risk of cancer progression in premalignant conditions of the gastrointestinal tract is assessed by examining the degree of histological dysplasia. However, there are many putative pro-cancer genetic changes that have occurred in histologically normal tissue well before the onset of dysplasia. Here we summarize the evidence for such pre-tumour clones and the existing technology that can be used to locate these clones and characterize them at the genetic level. We also discuss the mechanisms by which pre-tumour clones may spread through large areas of normal tissue, and highlight emerging theories on how multiple clones compete and interact within the gastrointestinal mucosa. It is important to gain an understanding of these processes, as it is envisaged that certain pre-tumour changes may be powerful predictive markers, with the potential to identify patients at high risk of developing cancer at a much earlier stage.


Asunto(s)
Biomarcadores/metabolismo , Células Clonales/patología , Neoplasias Gastrointestinales/patología , Lesiones Precancerosas/patología , Transformación Celular Neoplásica , Células Clonales/metabolismo , Progresión de la Enfermedad , Mucosa Gástrica/patología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Humanos , Mucosa Intestinal/patología , Mutación , Fenotipo , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo
14.
Pediatr Qual Saf ; 9(3): e728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751897

RESUMEN

Background: Despite limited evidence, a high-flow nasal cannula (HFNC) is often used to treat mild to moderate (m/m) bronchiolitis. We aimed to decrease the rate of HFNC use in the pediatric emergency department (PED) for m/m bronchiolitis from a baseline of 37% to less than 18.5%. Methods: A multidisciplinary team created a bronchiolitis pathway and implemented it in December 2019. A respiratory score (RS) in the electronic medical record objectively classified bronchiolitis severity as mild, moderate, or severe. We tracked HFNC utilization in the PED among patients with m/m bronchiolitis as our primary outcome measure between December 2019 and December 2021. We monitored the percentage of patients with an RS as a process measure. Interventions through four plan-do-study-act cycles included updating the hospital oxygen therapy policy, applying the RS to all patients in respiratory distress, modifying the bronchiolitis order set, and developing a bronchiolitis-specific HFNC order. Results: Three hundred twenty-five patients were admitted from the PED with m/m bronchiolitis during the 11-month baseline period and 600 patients during the 25-month intervention period. The mean rate of HFNC utilization decreased from 37% to 17%. Despite a decrease in bronchiolitis encounters after the pandemic, in the spring of 2021, when volumes returned, we had a sustained HFNC utilization rate of 17%. RS entry increased from 60% to 73% in the intervention period. Conclusions: A clinical pathway for bronchiolitis can lead to decreased use of HFNC for m/m bronchiolitis. Consistent RS, order set development with decision support, and education led to sustained improvement despite pandemic-related volumes.

15.
Cancer Res ; 84(10): 1560-1569, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479434

RESUMEN

Genomic analysis of the T-cell receptor (TCR) reveals the strength, breadth, and clonal dynamics of the adaptive immune response to pathogens or cancer. The diversity of the TCR repertoire, however, means that sequencing is technically challenging, particularly for samples with low-quality, degraded nucleic acids. Here, we developed and validated FUME-TCRseq, a robust and sensitive RNA-based TCR sequencing methodology that is suitable for formalin-fixed paraffin-embedded samples and low amounts of input material. FUME-TCRseq incorporates unique molecular identifiers into each molecule of cDNA, allowing correction for sequencing errors and PCR bias. Using RNA extracted from colorectal and head and neck cancers to benchmark the accuracy and sensitivity of FUME-TCRseq against existing methods demonstrated excellent concordance between the datasets. Furthermore, FUME-TCRseq detected more clonotypes than a commercial RNA-based alternative, with shorter library preparation time and significantly lower cost. The high sensitivity and the ability to sequence RNA of poor quality and limited amount enabled quantitative analysis of small numbers of cells from archival tissue sections, which is not possible with other methods. Spatially resolved FUME-TCRseq analysis of colorectal cancers using macrodissected archival samples revealed the shifting T-cell landscapes at the transition to an invasive phenotype and between tumor subclones containing distinct driver alterations. In summary, FUME-TCRseq represents an accurate, sensitive, and low-cost tool for the characterization of T-cell repertoires, particularly in samples with low-quality RNA that have not been accessible using existing methodology. SIGNIFICANCE: FUME-TCRseq is a TCR sequencing methodology that supports sensitive and spatially resolved detection of TCR clones in archival clinical specimens, which can facilitate longitudinal tracking of immune responses through disease course and treatment.


Asunto(s)
Neoplasias Colorrectales , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/inmunología , ARN/genética , Estabilidad del ARN
16.
Mol Oncol ; 18(3): 677-690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145461

RESUMEN

The median age of patients with pancreatic ductal adenocarcinoma (PDAC) at diagnosis is 71 years; however, around 10% present with early-onset pancreatic cancer (EOPC), i.e., before age 50. The molecular mechanisms underlying such an early onset are unknown. We assessed the role of common PDAC drivers (KRAS, TP53, CDKN2A and SMAD4) and determined their mutational status and protein expression in 90 formalin-fixed, paraffin-embedded tissues, including multiple primary and matched metastases, from 37 EOPC patients. KRAS was mutated in 88% of patients; p53 was altered in 94%, and p16 and SMAD4 were lost in 86% and 71% of patients, respectively. Meta-synthesis showed a higher rate of p53 alterations in EOPC than in late-onset PDAC (94% vs. 69%, P = 0.0009) and significantly higher loss of SMAD4 (71% vs. 44%, P = 0.0025). The majority of EOPC patients accumulated aberrations in all four drivers; in addition, high tumour heterogeneity was observed across all tissues. The cumulative effect of an exceptionally high rate of alterations in all common PDAC driver genes combined with high tumour heterogeneity suggests an important mechanism underlying the early onset of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Anciano , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Mutación/genética
17.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405882

RESUMEN

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.

18.
Nat Genet ; 56(7): 1420-1433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956208

RESUMEN

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación , Proteína 3 Homóloga de MutS/genética , Tasa de Mutación , Mutación del Sistema de Lectura/genética
19.
Trends Cell Biol ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37968225

RESUMEN

Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change. We suggest 'phenotypic noise' be used to distinguish non-genetic changes in phenotype that occur independently from the environment. We discuss the conceptual and methodological techniques used to identify these phenomena during cancer evolution. We propose that the distinction will guide efforts to define mechanisms of phenotype change, accelerate translational work to manipulate phenotypes through treatment, and, ultimately, improve patient outcomes.

20.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546942

RESUMEN

Drug resistance results in poor outcomes for most patients with metastatic cancer. Adaptive Therapy (AT) proposes to address this by exploiting presumed fitness costs incurred by drug-resistant cells when drug is absent, and prescribing dose reductions to allow fitter, sensitive cells to re-grow and re-sensitise the tumour. However, empirical evidence for treatment-induced fitness change is lacking. We show that fitness costs in chemotherapy-resistant ovarian cancer cause selective decline and apoptosis of resistant populations in low-resource conditions. Moreover, carboplatin AT caused fluctuations in sensitive/resistant tumour population size in vitro and significantly extended survival of tumour-bearing mice. In sequential blood-derived cell-free DNA and tumour samples obtained longitudinally from ovarian cancer patients during treatment, we inferred resistant cancer cell population size through therapy and observed it correlated strongly with disease burden. These data have enabled us to launch a multicentre, phase 2 randomised controlled trial (ACTOv) to evaluate AT in ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA