Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 16(7): 1283-90, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18500249

RESUMEN

A major limitation of many self-assembling nonviral gene transfer formulations is that they are commonly prepared at relatively low component concentrations. While this typically has little impact on their use in cell culture, it can severely limit the progress of in vivo studies. In order to overcome this, we have developed a simple, scalable, pharmaceutically acceptable concentration method that has allowed us to increase the concentration of a commonly used pDNA/PEI formulation from 0.2 to >8 mg/ml plasmid DNA (pDNA). Crucially, the concentration method was found to have only minimal impact on the electrostatic properties or size of the pDNA/PEI particles. When delivered as an aerosol to the mouse lung, the concentrated pDNA/PEI formulations resulted in a 15-fold increase in lung reporter gene expression, with minimal impact in terms of inflammation or toxicity. Importantly, this performance advantage was replicated after aerosol administration to sheep lungs, with reporter gene expression being similarly approximately 15-fold higher than with the conventional pDNA/PEI formulation, and lung inflammation falling to background levels. These findings demonstrate that concentrated pDNA/PEI formulations offer increased aerosol gene transfer with decreased inflammatory sequelae, and represent a promising advance in the field of nonviral lung gene transfer. It seems likely that similar benefits might be achievable with alternative delivery routes and with other nonviral formulations.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , Pulmón/metabolismo , Plásmidos/administración & dosificación , Polietileneimina/administración & dosificación , Aerosoles , Animales , ADN/química , ADN/farmacocinética , Expresión Génica , Terapia Genética , Ratones , Plásmidos/química , Plásmidos/farmacocinética , Polietileneimina/química , Polietileneimina/farmacocinética , Ovinos
2.
Biomaterials ; 34(38): 10267-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24090839

RESUMEN

Clinically effective gene therapy for Cystic Fibrosis has been a goal for over 20 years. A plasmid vector (pGM169) that generates persistent expression and reduced host inflammatory responses in mice has raised prospects for translation to the clinic. The UK CF Gene Therapy Consortium is currently evaluating long-term repeated delivery of pGM169 complexed with the cationic lipid GL67A in a large Multidose Trial. This regulatory-compliant evaluation of aerosol administration of nine doses of pGM169/GL67A at monthly intervals, to the sheep lung, was performed in preparation for the Multidose Trial. All sheep tolerated treatment well with no adverse effects on haematology, serum chemistry, lung function or histopathology. Acute responses were observed in relation to bronchoalveolar cellularity comprising increased neutrophils and macrophage numbers 1 day post-delivery but these increases were transient and returned to baseline. Importantly there was no cumulative inflammatory effect or lung remodelling with successive doses. Molecular analysis confirmed delivery of pGM169 DNA to the airways and pGM169-specific mRNA was detected in bronchial brushing samples at day 1 following doses 1, 5 and 9. In conclusion, nine doses of pGM169/GL67A were well tolerated with no significant evidence of toxicity that would preclude adoption of a similar strategy in CF patients.


Asunto(s)
Fibrosis Quística/genética , Lípidos/química , Pulmón/metabolismo , Aerosoles , Animales , Epitelio/metabolismo , Femenino , Técnicas de Transferencia de Gen , Masculino , Ovinos
3.
Biomaterials ; 32(10): 2614-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21239054

RESUMEN

The cationic lipid GL67A is one of the more efficient non-viral gene transfer agents (GTAs) for the lungs, and is currently being evaluated in an extensive clinical trial programme for cystic fibrosis gene therapy. Despite conferring significant expression of vector-specific mRNA following transfection of differentiated human airway cells cultured on air liquid interfaces (ALI) cultures and nebulisation into sheep lung in vivo we were unable to detect robust levels of the standard reporter gene Firefly luciferase (FLuc). Recently a novel secreted luciferase isolated from Gaussia princeps (GLuc) has been described. Here, we show that (1) GLuc is a more sensitive reporter gene and offers significant advantages over the traditionally used FLuc in pre-clinical models for lung gene transfer that are difficult to transfect, (2) GL67A-mediated gene transfection leads to significant production of recombinant protein in these models, (3) promoter activity in ALI cultures mimics published in vivo data and these cultures may, therefore, be suitable to characterise promoter activity in a human ex vivo airway model and (4) detection of GLuc in large animal broncho-alveolar lavage fluid and serum facilitates assessment of duration of gene expression after gene transfer to the lungs. In summary, we have shown here that GLuc is a sensitive reporter gene and is particularly useful for monitoring gene transfer in difficult to transfect models of the airway and lung. This has allowed us to validate that GL67A, which is currently in clinical use, can generate significant amounts of recombinant protein in fully differentiated human air liquid interface cultures and the ovine lung in vivo.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Reporteros/genética , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Células Cultivadas , Electricidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Lípidos/química , Luciferasas/sangre , Ratones , Polietileneimina/química , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Factores de Tiempo , Transfección , Virus/genética , Imagen de Cuerpo Entero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA