Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Transl Med ; 15(717): eadg1485, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820010

RESUMEN

To date, there are no approved treatments for the diminished strength and paralysis that result from the loss of peripheral nerve function due to trauma, heritable neuromuscular diseases, or aging. Here, we showed that denervation resulting from transection of the sciatic nerve triggered a marked increase in the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in skeletal muscle in mice, providing evidence that injury drives early expression of this aging-associated enzyme or gerozyme. Treating mice with a small-molecule inhibitor of 15-PGDH promoted regeneration of motor axons and formation of neuromuscular synapses leading to an acceleration in recovery of force after an acute nerve crush injury. In aged mice with chronic denervation of muscles, treatment with the 15-PGDH inhibitor increased motor neuron viability and restored neuromuscular junctions and function. These presynaptic changes synergized with previously reported muscle tissue remodeling to result in a marked increase in the strength of aged muscles. We further found that 15-PGDH aggregates defined the target fibers that are histopathologic hallmarks of human neurogenic myopathies, suggesting that the gerozyme may be involved in their etiology. Our data suggest that inhibition of 15-PGDH may constitute a therapeutic strategy to physiologically boost prostaglandin E2, restore neuromuscular connectivity, and promote recovery of strength after acute or chronic denervation due to injury, disease, or aging.


Asunto(s)
Hidroxiprostaglandina Deshidrogenasas , Sinapsis , Ratones , Animales , Humanos , Anciano , Prostaglandinas , Músculo Esquelético , Desnervación/métodos , Regeneración Nerviosa
2.
Sci Rep ; 10(1): 6918, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332853

RESUMEN

Three-dimensional (3D) in vitro models of human skeletal muscle mimic aspects of native tissue structure and function, thereby providing a promising system for disease modeling, drug discovery or pre-clinical validation, and toxicity testing. Widespread adoption of this research approach is hindered by the lack of easy-to-use platforms that are simple to fabricate and that yield arrays of human skeletal muscle micro-tissues (hMMTs) in culture with reproducible physiological responses that can be assayed non-invasively. Here, we describe a design and methods to generate a reusable mold to fabricate a 96-well platform, referred to as MyoTACTIC, that enables bulk production of 3D hMMTs. All 96-wells and all well features are cast in a single step from the reusable mold. Non-invasive calcium transient and contractile force measurements are performed on hMMTs directly in MyoTACTIC, and unbiased force analysis occurs by a custom automated algorithm, allowing for longitudinal studies of function. Characterizations of MyoTACTIC and resulting hMMTs confirms the capability of the device to support formation of hMMTs that recapitulate biological responses. We show that hMMT contractile force mirrors expected responses to compounds shown by others to decrease (dexamethasone, cerivastatin) or increase (IGF-1) skeletal muscle strength. Since MyoTACTIC supports hMMT long-term culture, we evaluated direct influences of pancreatic cancer chemotherapeutics agents on contraction competent human skeletal muscle myotubes. A single application of a clinically relevant dose of Irinotecan decreased hMMT contractile force generation, while clear effects on myotube atrophy were observed histologically only at a higher dose. This suggests an off-target effect that may contribute to cancer associated muscle wasting, and highlights the value of the MyoTACTIC platform to non-invasively predict modulators of human skeletal muscle function.


Asunto(s)
Músculo Esquelético/fisiología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Antineoplásicos/farmacología , Fenómenos Biomecánicos , Calcio/metabolismo , Humanos
3.
Cell Mol Bioeng ; 10(5): 501-513, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31719873

RESUMEN

INTRODUCTION: Notch signaling is amongst the key intrinsic mechanisms regulating satellite cell fate, promoting the transition of activated satellite cells to highly proliferative myogenic progenitor cells and preventing their premature differentiation. Although much is known about the biochemical milieu that drives myogenic progression, less is known about the spatial cues providing spatiotemporal control of skeletal muscle repair in the context of Notch signaling. METHODS: Using a murine injury model, we quantified in vivo biophysical changes that occur within the skeletal muscle during regeneration. Employing tunable poly(ethylene glycol)-based hydrogel substrates, we modeled the measured changes in bulk stiffness in the context of Notch ligand signaling, which are present in the regenerative milieu at the time of injury. RESULTS: Following injury, there is a transient increase in the bulk stiffness of the tibialis anterior muscle that may be explained in part by changes in extracellular matrix deposition. When presented to primary myoblasts, Jagged-1, Jagged-2, and Dll1 in a tethered format elicited greater degrees of Notch activity compared to their soluble form. Only tethered Jagged-1 effects were tuned by substrate stiffness, with the greatest Notch activation observed on stiff hydrogels matching the stiffness of regenerating muscle. When exposed to tethered Jagged-1 on stiff hydrogels, fewer primary myoblasts expressed myogenin, and pharmacological inhibitor studies suggest this effect is Notch and RhoA dependent. CONCLUSION: Our study proposes that tethered Jagged-1 presented in the context of transient tissue stiffening serves to tune Notch activity in myogenic progenitors during skeletal muscle repair and delay differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA