RESUMEN
Influenza virus causes epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses. Influenza viruses require host genes to replicate. RNA interference (RNAi) screens can identify host genes coopted by influenza virus for replication. Targeting these proinfluenza genes can provide therapeutic strategies to reduce virus replication. Nineteen proinfluenza G-protein-coupled receptor (GPCR) and 13 proinfluenza ion channel genes were identified in human lung (A549) cells by use of small interfering RNAs (siRNAs). These proinfluenza genes were authenticated by testing influenza virus A/WSN/33-, A/CA/04/09-, and B/Yamagata/16/1988-infected A549 cells, resulting in the validation of 16 proinfluenza GPCR and 5 proinfluenza ion channel genes. These findings showed that several GPCR and ion channel genes are needed for the production of infectious influenza virus. These data provide potential targets for the development of host-directed therapeutic strategies to impede the influenza virus productive cycle so as to limit infection.IMPORTANCE Influenza epidemics result in morbidity and mortality each year. Vaccines are the most effective preventive measure but require annual reformulation, since a mismatch of vaccine strains can result in vaccine failure. Antiviral measures are desirable particularly when vaccines fail. In this study, we used RNAi screening to identify several GPCR and ion channel genes needed for influenza virus replication. Understanding the host genes usurped by influenza virus during viral replication can help identify host genes that can be targeted for drug repurposing or for the development of antiviral drugs. The targeting of host genes is refractory to drug resistance generated by viral mutations, as well as providing a platform for the development of broad-spectrum antiviral drugs.
Asunto(s)
Interacciones Microbiota-Huesped , Subtipo H1N1 del Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/virología , Canales Iónicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Animales , Perros , Humanos , Células de Riñón Canino Madin Darby , Replicación ViralRESUMEN
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Asunto(s)
Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Mucosa Respiratoria/inmunología , Animales , Línea Celular , Citocinas/inmunología , Perros , Células Epiteliales/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Interferones/inmunología , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/inmunología , Mucosa Respiratoria/citología , Porcinos , Replicación Viral/fisiologíaRESUMEN
Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.
Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Canales Iónicos/metabolismo , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Replicación Viral , Células A549 , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/prevención & control , Canales Iónicos/genética , MicroARNs/genética , Receptores Acoplados a Proteínas G/genéticaRESUMEN
Analysis of host gene expression profiles following viral infections of target cells/tissues can reveal crucial insights into the host: virus interaction and enables the development of novel therapeutics and prophylactics. Regions of the host genome that do not code for protein, encode structural, and functional non-coding RNAs that are important not only in regulation of host gene expression but also may impact viral replication. This review summarizes the role of host non-coding RNAs during replication of multiple respiratory viruses with a focus on Respiratory Syncytial Virus (RSV), an important pediatric pathogen. This review highlights the current state of knowledge and understanding regarding the function(s) of ncRNAs for respiratory viral infection and host immunity in general.
Asunto(s)
Interacciones Huésped-Patógeno , ARN no Traducido/genética , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/inmunología , Replicación Viral , Humanos , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/patogenicidadRESUMEN
Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.
Asunto(s)
MicroARNs/inmunología , Poliomielitis/inmunología , Poliovirus/fisiología , Replicación Viral , Regulación Viral de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/inmunología , Interacciones Huésped-Patógeno , Humanos , MicroARNs/genética , Poliomielitis/genética , Poliomielitis/virología , Poliovirus/genética , ARN Viral/genética , ARN Viral/metabolismoRESUMEN
Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-b pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-ß. Treatment with exogenous TGF-ß suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-ß, which facilitates RSV replication.
Asunto(s)
MicroARNs/genética , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas no Estructurales Virales/metabolismo , Interacciones Huésped-Patógeno , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Proteínas no Estructurales Virales/genéticaRESUMEN
MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 µM Zn), or with 15 or 50 µM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 µM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-ß/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.
Asunto(s)
Células Epiteliales/efectos de los fármacos , MicroARNs/genética , Proteína Smad4/genética , Proteína Smad5/genética , Sulfato de Zinc/farmacología , Línea Celular , Niño , Suplementos Dietéticos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Células Hep G2 , Humanos , MicroARNs/sangre , Especificidad de Órganos , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Proteína Smad5/metabolismo , Sulfato de Zinc/sangreRESUMEN
Newcastle disease (ND), an economically important disease in poultry, is caused by virulent strains of the genetically diverse Orthoavulavirus javaense (OAVJ). Laboratories rely on quantitative real-time reverse transcription PCR (qRT-PCR) to detect OAVJ and differentiate between OAVJ pathotypes. This study demonstrates that a fusion cleavage site based molecular beacon with reverse transcription loop mediated isothermal amplification (MB-RT-LAMP) assay can detect and differentiate OAVJ pathotypes in a single assay. Data show that the assay can rapidly identify diverse OAVJ genotypes with sensitivity only one log-fold lower than the current fusion qRT-PCR assay (104 copies), exhibits a high degree of specificity for OAVJ, and the molecular beacon can differentiate mesogenic/velogenic sequences from lentogenic sequences. Further, data show that a two-minute rapid lysis protocol preceding MB-RT-LAMP can detect and differentiate OAVJ RNA from both spiked samples and oropharyngeal swabs without the need for RNA isolation. As the MB-RT-LAMP assay can rapidly detect and discriminate between lentogenic and mesogenic/velogenic sequences of OAVJ within one assay, without the need for RNA isolation, and is adaptable to existing veterinary diagnostic laboratory workflow without additional equipment, this assay could be a rapid primary screening tool before qRT-PCR based validation in resource limited settings.
Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Virulencia/genética , ARN Viral/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/diagnóstico , GenotipoRESUMEN
Non-targeted next generation sequencing (NGS) is widely applied to identify the diversity of pathogens in field samples. However, abundance of host RNA (especially rRNA) and other environmental nucleic acids can reduce the abundance of pathogen specific reads of interest, reduce depth of coverage and increase surveillance costs. We presently deplete chicken- and selected bacterial-specific rRNAs in poultry field RNA samples with complementary DNA probes in a commercially available probe hybridization buffer followed by digestion of the RNA:DNA hybrids with RNase H. Because the current buffer is an expensive special order reagent of proprietary composition, we tested in-house and other commercially available buffers and identified a viable alternative that yields equivalent host rRNA depletion and viral-specific reads in poultry samples as the current special order reagent but at a reduced cost.
Asunto(s)
Ácidos Nucleicos , ARN , Animales , Aves de Corral , Hibridación de Ácido Nucleico , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
To enhance the efficacy of the current Newcastle disease vaccine, we have selected potential adjuvants that target well-characterized pattern recognition receptors: the toll-like receptors (TLRs). Imiquimod is a small-molecule activator of TLR7, which is a sensor of dsDNA. ODN-1826 is a mimetic of CpG DNA and ligates TLR21 (a chicken homologue of TLR9 in mammals). The activation of TLRs leads to antiviral responses, including the induction of type I interferons (IFNs). In this study, birds were vaccinated intranasally with a live LaSota strain with or without imiquimod or ODN-1826 (50 µg/bird). Two weeks after vaccination, the birds were challenged with a virulent Newcastle disease virus (chicken/CA/212676/2002). Both adjuvants (imiquimod or ODN-1826) induced higher and more uniform antibody titers among vaccinated birds compared with the live vaccine-alone group. In addition, adjuvanted vaccines demonstrated greater protective efficacy in terms of the reduction in virus-shedding titer and the number of birds shedding the challenge virus at 2 and 4 days post-challenge. A differential expression of antiviral and immune-related genes was observed among groups from tissues (Harderian gland, trachea, cecal tonsil, and spleen) collected 1 and 3 days after treatment. These results demonstrate the potential of TLR-targeted adjuvants as mucosal vaccine enhancers and warrant a further characterization of immune correlates and optimization for efficacy.
RESUMEN
A complete genome sequence of a VG/GA -like strain of avian orthoavulavirus 1 (AOAV-1) was identified by nontargeted next-generation sequencing of an oropharyngeal swab sample collected from a carcass of a 12-mo-old backyard chicken. The isolate has a fusion (F) protein cleavage site motif consistent with a low virulent AOAV-1, but it has a unique motif with phenylalanine at position 117 (112G-R-Q-G-R↓F117), which is typical for virulent AOAV-1 strains. The one nucleotide difference at the cleavage site compared to other low-virulence viruses made the isolate detectable by F-gene-specific real-time reverse transcription-PCR (rRT-PCR) developed as a diagnostic test to specifically detect virulent strains. The mean death time determined in eggs and intracerebral pathogenicity index determined in chickens classified the isolate as lentogenic. This is the first report of a lentogenic VG/GA-like virus with a phenylalanine residue at position 117 of the F protein cleavage site in the United States. In addition to concern for potential pathogenic shift of the virus through additional changes at the cleavage site, our finding warrants increased awareness of diagnosticians of potential false positive F-gene rRT-PCR tests.
Secuenciación y caracterización del genoma de un aislado similar a VG/GA del ortoavulavirus aviar 1 con un motivo único en el sitio de disociación del gene de fusión. Se identificó una secuencia genómica completa de una cepa similar a la cepa Villegas-Glisson/Universidad de Georgia (VG/GA) del ortoavulavirus aviar 1 (AOAV-1) mediante secuenciación no dirigida de nueva generación de una muestra de hisopo orofaríngeo recolectada de una gallina muerta de traspatio de 12 meses. El aislado tiene un motivo en el sitio de disociación de la proteína de fusión (F) consistente con un ortoavulavirus aviar de baja virulencia, pero tiene un motivo único con fenilalanina en la posición 117 (112G-R-Q-G-R↓F117), que es típico para cepas virulentas del AOAV-1. La diferencia de un nucleótido en el sitio de escisión en comparación con otros virus de baja virulencia hizo que el aislado fuera detectable mediante transcripción reversa y PCR en tiempo real en tiempo real específica del gene F (rtRT-PCR) desarrollada como una prueba de diagnóstico para detectar específicamente a las cepas virulentas. El tiempo medio de muerte determinado en huevos y el índice de patogenicidad intracerebral determinado en pollos clasificaron al aislado como lentogénico. Este es el primer informe en los Estados Unidos de un virus lentogénico similar a VG/GA con un residuo de fenilalanina en la posición 117 del sitio de disociación de la proteína F. Además de la preocupación por el posible cambio patogénico del virus a través de cambios adicionales en el sitio de disociación, nuestro contribuye con un mayor conocimiento por parte del personal de diagnóstico acerca de posibles falsos positivos en las pruebas rtRT-PCR del gene F.
Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Animales , Pollos , Enfermedades de las Aves de Corral/patología , Virus de la Enfermedad de Newcastle/genética , Secuencia de Bases , Virulencia/genética , FilogeniaRESUMEN
Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase-untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression.
Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Virus Sincitiales Respiratorios/fisiología , Replicación Viral/fisiología , Animales , Secuencia de Bases , Línea Celular , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , MicroARNs/genética , Alveolos Pulmonares/citología , Células VeroRESUMEN
Even with the COVID-19 pandemic, tuberculosis remains a leading cause of human death due to a single infectious agent. Until successfully treated, infected individuals may continue to transmit Mycobacterium tuberculosis bacilli to contacts. As with other respiratory pathogens, such as SARS-CoV-2, modeling the process of person-to-person transmission will inform efforts to develop vaccines and therapies that specifically impede disease transmission. The ferret (Mustela furo), a relatively inexpensive, small animal has been successfully employed to model transmissibility, pathogenicity, and tropism of influenza and other respiratory disease agents. Ferrets can become naturally infected with Mycobacterium bovis and are closely related to badgers, well known in Great Britain and elsewhere as a natural transmission vehicle for bovine tuberculosis. Herein, we report results of a study demonstrating that within 7 weeks of intratracheal infection with a high dose (>5 x 103 CFU) of M. tuberculosis bacilli, ferrets develop clinical signs and pathological features similar to acute disease reported in larger animals, and ferrets infected with very-high doses (>5 x 104 CFU) develop severe signs within two to four weeks, with loss of body weight as high as 30%. Natural transmission of this pathogen was also examined. Acutely-infected ferrets transmitted M. tuberculosis bacilli to co-housed naïve sentinels; most of the sentinels tested positive for M. tuberculosis in nasal washes, while several developed variable disease symptomologies similar to those reported for humans exposed to an active tuberculosis patient in a closed setting. Transmission was more efficient when the transmitting animal had a well-established acute infection. The findings support further assessment of this model system for tuberculosis transmission including the testing of prevention measures and vaccine efficacy.
Asunto(s)
COVID-19 , Tuberculosis , Animales , Modelos Animales de Enfermedad , Hurones , Humanos , Pandemias , SARS-CoV-2RESUMEN
Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.
Asunto(s)
Antivirales/farmacología , Clopidogrel/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Triantereno/farmacología , Células A549 , Animales , Perros , Reposicionamiento de Medicamentos , Humanos , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacosRESUMEN
Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host responses through small non-coding RNA (sncRNA) expression. We show that RSV or MeV infection of neuronal cells induces sncRNAs including various microRNAs and transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs (GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine). Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous codon usage indices suggesting selective cleavage of the tRNAs occurs in infected neuronal cells. The data implies that differentially expressed sncRNAs may regulate host gene expression via multiple mechanisms in neuronal cells.
RESUMEN
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Transcripción Reversa , Sensibilidad y Especificidad , PorcinosRESUMEN
The COVID-19 pandemic caused by the SARS-CoV-2 is a serious health threat causing worldwide morbidity and mortality. Real-time reverse transcription PCR (RT-qPCR) is currently the standard for SARS-CoV-2 detection. Although various nucleic acid-based assays have been developed to aid the detection of SARS-CoV-2 from COVID-19 patient samples, the objective of this study was to develop a diagnostic test that can be completed in 30 minutes without having to isolate RNA from the samples. Here, we present an RNA amplification detection method performed using reverse transcription loop-mediated isothermal amplification (RT-LAMP) reactions to achieve specific, rapid (30 min), and sensitive (<100 copies) fluorescent detection in real-time of SARS-CoV-2 directly from patient nasopharyngeal swab (NP) samples. When compared to RT-qPCR, positive NP swab samples assayed by fluorescent RT-LAMP had 98% (n = 41/42) concordance and negative NP swab samples assayed by fluorescent RT-LAMP had 87% (n = 59/68) concordance for the same samples. Importantly, the fluorescent RT-LAMP results were obtained without purification of RNA from the NP swab samples in contrast to RT-qPCR. We also show that the fluorescent RT-LAMP assay can specifically detect live virus directly from cultures of both SARS-CoV-2 wild type (WA1/2020), and a SARS-CoV-2 B.1.1.7 (alpha) variant strain with equal sensitivity to RT-qPCR. RT-LAMP has several advantages over RT-qPCR including isothermal amplification, speed (<30 min), reduced costs, and similar sensitivity and specificity.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación , Humanos , ARN Viral/aislamiento & purificación , Sensibilidad y EspecificidadRESUMEN
Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.
Asunto(s)
Granjas/estadística & datos numéricos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/genética , Enfermedades de los Porcinos/epidemiología , Animales , Variación Genética , Hemaglutininas Virales/genética , Humanos , Medio Oeste de Estados Unidos/epidemiología , Neuraminidasa/genética , Orthomyxoviridae/clasificación , Infecciones por Orthomyxoviridae/transmisión , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Sudeste de Estados Unidos/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Proteínas Virales/genéticaRESUMEN
Viral proteins encode numerous antiviral activities to modify the host immunity. In this article, we hypothesize that viral genomes and gene transcripts interfere with host gene expression using passive mechanisms to deregulate host microRNA (miRNA) activity. We postulate that various RNA viruses mimic or block binding between a host miRNA and its target transcript, a phenomenon mediated by the miRNA seed site at the 5' end of miRNA. Virus-encoded miRNA seed sponges (vSSs) can potentially bind to host miRNA seed sites and prevent interaction with their native targets thereby relieving native miRNA suppression. In contrast, virus-encoded miRNA seed mimics (vSMs) may mediate considerable downregulation of host miRNA activity. We analyzed genomes from diverse RNA viruses for vSS and vSM signatures and found an abundance of these motifs indicating that this may be a mechanism of deceiving host immunity. Employing respiratory syncytial virus and measles virus as models, we reveal that regions surrounding vSS or vSM motifs have features characteristics of pre-miRNA templates and show that RSV viral transcripts are processed into small RNAs that may behave as vSS or vSM effectors. These data suggest that complex molecular interactions likely occur at the host-virus interface. Identifying the mechanisms in the network of interactions between the host and viral transcripts can help uncover ways to improve vaccine efficacy, therapeutics, and potentially mitigate the adverse events that may be associated with some vaccines.
Asunto(s)
Interacciones Huésped-Patógeno/genética , Evasión Inmune/genética , MicroARNs/genética , Virus ARN/genética , Células A549 , Animales , Expresión Génica , Genoma Viral , Humanos , Inmunidad , Ratones , Poríferos/virología , Alineación de Secuencia , Proteínas ViralesRESUMEN
Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.