Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500273

RESUMEN

Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.


Asunto(s)
Lignina , Tensoactivos , Lignina/química , Fermentación , Biomasa , Hidrólisis , Biocombustibles
2.
Artículo en Inglés | MEDLINE | ID: mdl-37914962

RESUMEN

Β-Carotene is a red-orange pigment that serves as a precursor to important pharmaceutical molecules like vitamin A and retinol, making it highly significant in the industrial sector. Consequently, there is an ongoing quest for more sustainable production methods. In this study, glucose and xylose, two primary sugars derived from sugarcane bagasse (SCB), were utilized as substrates for ß-carotene production by Rhodotorula glutinis CCT-2186. To achieve this, SCB underwent pretreatment using NaOH, involved different concentrations of total solids (TS) (10%, 15%, and 20%) to remove lignin. Each sample was enzymatically hydrolyzed using two substrate loadings (5% and 10%). The pretreated SCB with 10%, 15%, and 20% TS exhibited glucose hydrolysis yields (%wt) of 93.10%, 91.88%, and 90.77%, respectively. The resulting hydrolysate was employed for ß-carotene production under batch fermentation. After 72 h of fermentation, the SCB hydrolysate yielded a ß-carotene concentration of 118.56 ± 3.01 mg/L. These findings showcase the robustness of R. glutinis as a biocatalyst for converting SCB into ß-carotene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA