RESUMEN
BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the standard of care for Hurler syndrome (mucopolysaccharidosis type I, Hurler variant [MPSIH]). However, this treatment is only partially curative and is associated with complications. METHODS: We are conducting an ongoing study involving eight children with MPSIH. At enrollment, the children lacked a suitable allogeneic donor and had a Developmental Quotient or Intelligence Quotient score above 70 (i.e., none had moderate or severe cognitive impairment). The children received autologous hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with an α-L-iduronidase (IDUA)-encoding lentiviral vector after myeloablative conditioning. Safety and correction of blood IDUA activity up to supraphysiologic levels were the primary end points. Clearance of lysosomal storage material as well as skeletal and neurophysiological development were assessed as secondary and exploratory end points. The planned duration of the study is 5 years. RESULTS: We now report interim results. The children's mean (±SD) age at the time of HSPC gene therapy was 1.9±0.5 years. At a median follow-up of 2.10 years, the procedure had a safety profile similar to that known for autologous hematopoietic stem-cell transplantation. All the patients showed prompt and sustained engraftment of gene-corrected cells and had supraphysiologic blood IDUA activity within a month, which was maintained up to the latest follow-up. Urinary glycosaminoglycan (GAG) excretion decreased steeply, reaching normal levels at 12 months in four of five patients who could be evaluated. Previously undetectable levels of IDUA activity in the cerebrospinal fluid became detectable after gene therapy and were associated with local clearance of GAGs. Patients showed stable cognitive performance, stable motor skills corresponding to continued motor development, improved or stable findings on magnetic resonance imaging of the brain and spine, reduced joint stiffness, and normal growth in line with World Health Organization growth charts. CONCLUSIONS: The delivery of HSPC gene therapy in patients with MPSIH resulted in extensive metabolic correction in peripheral tissues and the central nervous system. (Funded by Fondazione Telethon and others; ClinicalTrials.gov number, NCT03488394; EudraCT number, 2017-002430-23.).
Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Iduronidasa/metabolismo , Mucopolisacaridosis I/terapia , Preescolar , Femenino , Estudios de Seguimiento , Vectores Genéticos , Glicosaminoglicanos/orina , Humanos , Iduronidasa/deficiencia , Iduronidasa/genética , Lactante , Lentivirus , Masculino , Mucopolisacaridosis I/metabolismo , Mutación , Trasplante de Células Madre , Trasplante AutólogoRESUMEN
BACKGROUND: Effective treatment for metachromatic leukodystrophy (MLD) remains a substantial unmet medical need. In this study we investigated the safety and efficacy of atidarsagene autotemcel (arsa-cel) in patients with MLD. METHODS: This study is an integrated analysis of results from a prospective, non-randomised, phase 1/2 clinical study and expanded-access frameworks. 29 paediatric patients with pre-symptomatic or early-symptomatic early-onset MLD with biochemical and molecular confirmation of diagnosis were treated with arsa-cel, a gene therapy containing an autologous haematopoietic stem and progenitor cell (HSPC) population transduced ex vivo with a lentiviral vector encoding human arylsulfatase A (ARSA) cDNA, and compared with an untreated natural history (NHx) cohort of 31 patients with early-onset MLD, matched by age and disease subtype. Patients were treated and followed up at Ospedale San Raffaele, Milan, Italy. The coprimary efficacy endpoints were an improvement of more than 10% in total gross motor function measure score at 2 years after treatment in treated patients compared with controls, and change from baseline of total peripheral blood mononuclear cell (PBMC) ARSA activity at 2 years after treatment compared with values before treatment. This phase 1/2 study is registered with ClinicalTrials.gov, NCT01560182. FINDINGS: At the time of analyses, 26 patients treated with arsa-cel were alive with median follow-up of 3·16 years (range 0·64-7·51). Two patients died due to disease progression and one due to a sudden event deemed unlikely to be related to treatment. After busulfan conditioning, all arsa-cel treated patients showed sustained multilineage engraftment of genetically modified HSPCs. ARSA activity in PBMCs was significantly increased above baseline 2 years after treatment by a mean 18·7-fold (95% CI 8·3-42·2; p<0·0001) in patients with the late-infantile variant and 5·7-fold (2·6-12·4; p<0·0001) in patients with the early-juvenile variant. Mean differences in total scores for gross motor function measure between treated patients and age-matched and disease subtype-matched NHx patients 2 years after treatment were significant for both patients with late-infantile MLD (66% [95% CI 48·9-82·3]) and early-juvenile MLD (42% [12·3-71·8]). Most treated patients progressively acquired motor skills within the predicted range of healthy children or had stabilised motor performance (maintaining the ability to walk). Further, most displayed normal cognitive development and prevention or delay of central and peripheral demyelination and brain atrophy throughout follow-up; treatment benefits were particularly apparent in patients treated before symptom onset. The infusion was well tolerated and there was no evidence of abnormal clonal proliferation or replication-competent lentivirus. All patients had at least one grade 3 or higher adverse event; most were related to conditioning or to background disease. The only adverse event related to arsa-cel was the transient development of anti-ARSA antibodies in four patients, which did not affect clinical outcomes. INTERPRETATION: Treatment with arsa-cel resulted in sustained, clinically relevant benefits in children with early-onset MLD by preserving cognitive function and motor development in most patients, and slowing demyelination and brain atrophy. FUNDING: Orchard Therapeutics, Fondazione Telethon, and GlaxoSmithKline.
Asunto(s)
Cerebrósido Sulfatasa/genética , Trasplante de Células Madre Hematopoyéticas , Lentivirus/genética , Leucodistrofia Metacromática , Edad de Inicio , Niño , Preescolar , Femenino , Terapia Genética , Vectores Genéticos , Humanos , Italia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Masculino , Estudios Prospectivos , Resultado del TratamientoRESUMEN
A link between maternal anxiety during pregnancy and adverse socio-emotional outcomes in childhood has been consistently sustained on the very early neurodevelopmental alteration of structural pathways between fetal limbic and cortical brain regions. In this study, we provide follow-up evidence for a feed-forward model linking (i) maternal anxiety, (ii) fetal functional neurodevelopment, (iii) neonatal functional network organization with (iv) socio-emotional neurobehavioral development in early childhood. Namely, we investigate a sample of 16 mother-fetus dyads and show how a maternal state-trait anxiety profile with pregnancy-specific worries can significantly influence functional synchronization patterns between regions of the fetal limbic system (i.e., hippocampus and amygdala) and the neocortex, as assessed through resting-state functional magnetic resonance imaging. Generalization of the findings was supported by leave-one-out cross-validation. We further show how this maternal-fetal cross-talk propagates to functional network topology in the neonate, specifically targeting connector hubs, and further maps onto socio-emotional profiles, assessed through Bayley-III socio-emotional scale in early childhood (i.e., in the 12-24 months range). Based on this evidence, we put forward the hypothesis of a "Maternal-Fetal-Neonatal Anxiety Backbone", through which neurobiological changes driven by maternal anxiety could trigger a divergence in the establishment of a cognitive-emotional development blueprint, in terms of the nascent functional homeostasis between bottom-up limbic and top-down higher-order neuronal circuitry.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Recién Nacido , Femenino , Embarazo , Humanos , Preescolar , Encéfalo/patología , Emociones , Feto , AnsiedadRESUMEN
Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.
Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética , Tronco Encefálico/patología , Leucodistrofia de Células Globoides/diagnóstico , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Cuerpo Calloso/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteínas Mitocondriales/genéticaRESUMEN
Septo-optic dysplasia (SOD) syndrome is a rare congenital disorder characterized by a classic triad of optic nerve/chiasm hypoplasia, agenesis of septum pellucidum and corpus callosum, and hypoplasia of the hypothalamic-pituitary axis.Herein, we report the clinical case of 2-year-old boy presenting with psychomotor delay, nystagmus, congenital hypothyroidism, and a clinically relevant growth delay. The neuroradiological examination showed partial segmental agenesis of the corpus callosum, agenesis of the septum pellucidum, optic nerve hypoplasia, and a small pituitary gland with a small median pituitary stalk. A whole-exome sequencing analysis detected a novel heterozygous de novo variant c.1069_1070delAG in SON, predicted as likely pathogenic.To date, SON pathogenic variants have been described as responsible for Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a multisystemic neurodevelopmental disorder mainly characterized by intellectual disability, facial dysmorphisms, visual abnormalities, brain malformations, feeding difficulties, and growth delay. The herein described case is the first recognized clinic-radiological occurrence of SOD syndrome with hypothalamic-pituitary dysfunction in a patient carrying a SON gene variant, considered responsible of ZTTK syndrome, suggesting a possible relationship between SOD and SON gene alterations, never described so far, making the search for SON gene mutations advisable in patients with SOD.
RESUMEN
We developed a brain and spine magnetic resonance scoring system based on a magnetic resonance assessment of 9 patients with mucopolysaccharidosis type I-Hurler who underwent hematopoietic stem-cell transplantation. The score is reliable and correlates with long-term clinical and cognitive outcome in patients with mucopolysaccharidosis type I-Hurler.
Asunto(s)
Encéfalo/diagnóstico por imagen , Mucopolisacaridosis I/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Adolescente , Encéfalo/patología , Niño , Preescolar , Femenino , Estudios de Seguimiento , Trasplante de Células Madre Hematopoyéticas , Humanos , Imagen por Resonancia Magnética , Masculino , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/cirugía , Neuroimagen , Estudios Retrospectivos , Médula Espinal/patologíaRESUMEN
Emapalumab, a fully human anti-IFNγ monoclonal antibody, has been approved in the US as second-line treatment of primary hemophagocytic lymphohistiocytosis (HLH) patients and has shown promise in patients with graft failure (GF) requiring a second allogeneic hematopoietic stem cell transplantation (HSCT). The blockade of IFNγ activity may increase the risk of severe infections, including fatal mycobacteriosis. We report a case of secondary HLH-related GF in the context of HLA-haploidentical HSCT successfully treated with emapalumab in the presence of concomitant life-threatening infections, including disseminated tuberculosis (TB). A 4 years old girl with Adenosine Deaminase-Severe Combined Immunodeficiency complicated by disseminated TB came to our attention for ex-vivo hematopoietic stem cell-gene therapy. After engraftment failure of gene corrected cells, she received two HLA-haploidentical T-cell depleted HSCT from the father, both failed due to GF related to concomitant multiple infections and secondary HLH. Emapalumab administration allowed to control HLH, as well as to prevent GF after a third haplo-HSCT from the mother. Remarkably, all infections improved with antimicrobial medications and disseminated TB did not show any reactivation. This seminal case supports emapalumab use for treatment of secondary HLH and prevention of GF in patients undergoing haplo-HSCT even in the presence of multiple infections, including TB.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Inmunodeficiencia Combinada Grave , Tuberculosis , Adenosina Desaminasa , Agammaglobulinemia , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Vacuna BCG , Preescolar , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/etiología , Inmunodeficiencia Combinada Grave/complicaciones , Inmunodeficiencia Combinada Grave/tratamiento farmacológico , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológicoRESUMEN
In this study, we characterize the natural course of metachromatic leukodystrophy (MLD), explore intra/inter group differences, and identify biomarkers to monitor disease progression. This is a longitudinal observational study. Genotype and characteristics at disease onset were recorded. Time-to-event analyses were performed to assess time to major disease-related milestones in different subgroups. Longitudinal trajectories of nerve conduction velocities (NCV), brain MRI score, and brainstem auditory evoked responses (BAERs) were described. We recruited 22 late-infantile, 14 early-juvenile, 5 late-juvenile, and 4 adult MLD patients. Thirty-four were prospectively evaluated (median FU time 43 months). In late-infantile patients, the attainment of independent walking was associated with a later age at dysphagia. In early-juvenile, the presence of isolated cognitive impairment at onset was not a favorable prognostic factor. Late-infantile and early-juvenile subjects showed similar rapid loss of ambulation and onset of seizures, but late-infantile displayed earlier loss of trunk control, dysphagia, and death. We found significant differences in all major disease-related milestones (except death) between early-juvenile and late-juvenile patients. Late-juvenile and adult patients both presented with a predominant cognitive impairment, mild/no peripheral neuropathy, lower brain MRI score at plateau compared to LI/EJ, and later cerebellar involvement. NCV and BAER were consistently severely abnormal in late-infantile but not in older subjects, in whom both NCV and BAER were variably affected, with no deterioration over time in some cases. This study clarifies intra/inter group differences between MLD subtypes and provides additional indications regarding reliable clinical and instrumental tools to monitor disease progression and to serve as areference to evaluate the efficacy of future therapeutic interventions inthe different MLD variants.
Asunto(s)
Encéfalo/patología , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/patología , Adolescente , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Italia , Estudios Longitudinales , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/patología , Imagen por Resonancia Magnética , MasculinoRESUMEN
Preterm birth can affect cognitive functions, such as attention or more generally executive control mechanisms, with severity in impairments proportional to prematurity. The functional cross-talk between the Default Mode (DMN) and Executive Control (ECN) networks mirrors the integrity of cognitive processing and is directly related to brain development. In this study, a cohort of 20 preterm-born infants was investigated using rs-fMRI. First, we addressed biological maturity of the DMN per se and its interplay with the ECN in terms of patterns of increased functional connectivity. Second, we assessed the impact of the degree of prematurity on the DMN-ECN functional interplay development in relation to cognitive outcome at six months. Our results highlighted the emergence of DMN in preterm neonates, with connectivity strength and synchronization between the anterior DMN hub and frontal areas increasing as a function of biological maturity. Further, cognitive scores at 6 months were predicted by mPFC-ECN connectivity strength with degree of prematurity impacting on mPFC-ECN connectivity and triggering differential patterns of functional maturation of the ECN for very early/early and moderate/late preterm neonates. Our findings suggest that the prematurity window allows to observe precursors of functional plasticity that may underlie different developmental trajectories in preterm children.
Asunto(s)
Función Ejecutiva , Nacimiento Prematuro , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Cognición , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , EmbarazoRESUMEN
BACKGROUND: Etiopathogenesis of preterm birth (PTB) is multifactorial, with a universe of risk factors interplaying between the mother and the environment. It is of utmost importance to identify the most informative factors in order to estimate the degree of PTB risk and trace an individualized profile. The aims of the present study were: 1) to identify all acknowledged risk factors for PTB and to select the most informative ones for defining an accurate model of risk prediction; 2) to verify predictive accuracy of the model and 3) to identify group profiles according to the degree of PTB risk based on the most informative factors. METHODS: The Maternal Frailty Inventory (MaFra) was created based on a systematic review of the literature including 174 identified intrauterine (IU) and extrauterine (EU) factors. A sample of 111 pregnant women previously categorized in low or high risk for PTB below 37 weeks, according to ACOG guidelines, underwent the MaFra Inventory. First, univariate logistic regression enabled p-value ordering and the Akaike Information Criterion (AIC) selected the model including the most informative MaFra factors. Second, random forest classifier verified the overall predictive accuracy of the model. Third, fuzzy c-means clustering assigned group membership based on the most informative MaFra factors. RESULTS: The most informative and parsimonious model selected through AIC included Placenta Previa, Pregnancy Induced Hypertension, Antibiotics, Cervix Length, Physical Exercise, Fetal Growth, Maternal Anxiety, Preeclampsia, Antihypertensives. The random forest classifier including only the most informative IU and EU factors achieved an overall accuracy of 81.08% and an AUC of 0.8122. The cluster analysis identified three groups of typical pregnant women, profiled on the basis of the most informative IU and EU risk factors from a lower to a higher degree of PTB risk, which paralleled time of birth delivery. CONCLUSIONS: This study establishes a generalized methodology for building-up an evidence-based holistic risk assessment for PTB to be used in clinical practice. Relevant and essential factors were selected and were able to provide an accurate estimation of degree of PTB risk based on the most informative constellation of IU and EU factors.
Asunto(s)
Nacimiento Prematuro/epidemiología , Adolescente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Embarazo , Nacimiento Prematuro/etiología , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND: Metachromatic leukodystrophy (a deficiency of arylsulfatase A [ARSA]) is a fatal demyelinating lysosomal disease with no approved treatment. We aimed to assess the long-term outcomes in a cohort of patients with early-onset metachromatic leukodystrophy who underwent haemopoietic stem-cell gene therapy (HSC-GT). METHODS: This is an ad-hoc analysis of data from an ongoing, non-randomised, open-label, single-arm phase 1/2 trial, in which we enrolled patients with a molecular and biochemical diagnosis of metachromatic leukodystrophy (presymptomatic late-infantile or early-juvenile disease or early-symptomatic early-juvenile disease) at the Paediatric Clinical Research Unit, Ospedale San Raffaele, in Milan. Trial participants received HSC-GT, which consisted of the infusion of autologous HSCs transduced with a lentiviral vector encoding ARSA cDNA, after exposure-targeted busulfan conditioning. The primary endpoints of the trial are safety (toxicity, absence of engraftment failure or delayed haematological reconstitution, and safety of lentiviral vector-tranduced cell infusion) and efficacy (improvement in Gross Motor Function Measure [GMFM] score relative to untreated historical controls, and ARSA activity, 24 months post-treatment) of HSC-GT. For this ad-hoc analysis, we assessed safety and efficacy outcomes in all patients who had received treatment and been followed up for at least 18 months post-treatment on June 1, 2015. This trial is registered with ClinicalTrials.gov, number NCT01560182. FINDINGS: Between April, 2010, and February, 2013, we had enrolled nine children with a diagnosis of early-onset disease (six had late-infantile disease, two had early-juvenile disease, and one had early-onset disease that could not be definitively classified). At the time of analysis all children had survived, with a median follow-up of 36 months (range 18-54). The most commonly reported adverse events were cytopenia (reported in all patients) and mucositis of different grades of severity (in five of nine patients [grade 3 in four of five patients]). No serious adverse events related to the medicinal product were reported. Stable, sustained engraftment of gene-corrected HSCs was observed (a median of 60·4% [range 14·0-95·6] lentiviral vector-positive colony-forming cells across follow-up) and the engraftment level was stable during follow-up; engraftment determinants included the duration of absolute neutropenia and the vector copy number of the medicinal product. A progressive reconstitution of ARSA activity in circulating haemopoietic cells and in the cerebrospinal fluid was documented in all patients in association with a reduction of the storage material in peripheral nerve samples in six of seven patients. Eight patients, seven of whom received treatment when presymptomatic, had prevention of disease onset or halted disease progression as per clinical and instrumental assessment, compared with historical untreated control patients with early-onset disease. GMFM scores for six patients up to the last follow-up showed that gross motor performance was similar to that of normally developing children. The extent of benefit appeared to be influenced by the interval between HSC-GT and the expected time of disease onset. Treatment resulted in protection from CNS demyelination in eight patients and, in at least three patients, amelioration of peripheral nervous system abnormalities, with signs of remyelination at both sites. INTERPRETATION: Our ad-hoc findings provide preliminary evidence of safety and therapeutic benefit of HSC-GT in patients with early-onset metachromatic leukodystrophy who received treatment in the presymptomatic or very early-symptomatic stage. The results of this trial will be reported when all 20 patients have achieved 3 years of follow-up. FUNDING: Italian Telethon Foundation and GlaxoSmithKline.
Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Leucodistrofia Metacromática/terapia , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Estudios de Seguimiento , Terapia Genética/métodos , Humanos , Lactante , Italia , Lentivirus , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/cirugía , Masculino , Resultado del TratamientoRESUMEN
Severe cognitive dysfunction is a frequent feature of multiple sclerosis (MS), normally associated with later stages of the disease in adult population. Nevertheless, progressive cognitive and neuropsychiatric disturbances might rarely be the presenting and predominant symptom. In order to better characterize this peculiar phenotype of MS, we report on the case of a 38-year-old man who referred to our hospital with the suspect of hereditary leukodystrophy after 5 years of behavioral and mood abnormalities, global cognitive dysfunction, clumsiness, and very mild pyramidal and cerebellar signs. Brain and spinal magnetic resonance imaging (MRI) combined with cerebrospinal fluid (CSF) analysis prompted the diagnosis of MS.
Asunto(s)
Disfunción Cognitiva/diagnóstico , Trastornos del Humor/diagnóstico , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Adulto , Disfunción Cognitiva/etiología , Humanos , Masculino , Trastornos del Humor/etiología , Esclerosis Múltiple Crónica Progresiva/complicacionesRESUMEN
BACKGROUND: Functional Magnetic Resonance Imaging (fMRI) is often used in preoperative assessment before epilepsy surgery, tumor or cavernous malformation resection, or cochlear implantation. As it requires complete immobility, sedation is needed for uncooperative patients. OBJECTIVE: The aim of this study was to compare the fMRI cortical activation pattern after auditory stimuli in propofol-sedated 5- to 8-year-old children with that of similarly aged nonsedated children. METHODS: When possible, children underwent MRI without sedation, otherwise it was induced with i.v. propofol 2 mg·kg(-1) and maintained with i.v. propofol 4-5 mg·kg(-1) ·h(-1) . Following diagnostic MRI, fMRi was carried out, randomly alternating two passive listening tasks (a fairy-tale and nonsense syllables). RESULTS: We studied 14 awake and 15 sedated children. During the fairy-tale task, the nonsedated children's blood-oxygen-level-dependent (BOLD) signal was bilaterally present in the posterior superior temporal gyrus (STG), Wernicke's area, and Broca's area. Sedated children showed similar activation, with lesser extension to Wernicke's area, and no activation in Broca's area. During the syllable task, the nonsedated children's BOLD signal was bilaterally observed in the STG and Wernicke's area, in Broca's area with leftward asymmetry, and in the premotor area. In sedated children, cortical activation was present in the STG, but not in the frontal lobes. BOLD signal change areas in sedated children were less extended than in nonsedated children during both the fairy-tale and syllable tasks. Modeling the temporal derivative during both the fairy-tale and syllable tasks, nonsedated children showed no response while sedated children did. CONCLUSIONS: After auditory stimuli, propofol-sedated 5- to 8-year-old children exhibit an fMRI cortical activation pattern which is different from that in similarly aged nonsedated children.
Asunto(s)
Sedación Consciente , Audición/fisiología , Hipnóticos y Sedantes , Imagen por Resonancia Magnética/métodos , Propofol , Estimulación Acústica , Niño , Preescolar , Femenino , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Humanos , Masculino , Oxígeno/sangre , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiologíaRESUMEN
The ability to learn language is a human trait. In adults and children, brain imaging studies have shown that auditory language activates a bilateral frontotemporal network with a left hemispheric dominance. It is an open question whether these activations represent the complete neural basis for language present at birth. Here we demonstrate that in 2-d-old infants, the language-related neural substrate is fully active in both hemispheres with a preponderance in the right auditory cortex. Functional and structural connectivities within this neural network, however, are immature, with strong connectivities only between the two hemispheres, contrasting with the adult pattern of prevalent intrahemispheric connectivities. Thus, although the brain responds to spoken language already at birth, thereby providing a strong biological basis to acquire language, progressive maturation of intrahemispheric functional connectivity is yet to be established with language exposure as the brain develops.
Asunto(s)
Corteza Auditiva/fisiología , Lenguaje , Red Nerviosa/fisiología , Habla/fisiología , Estimulación Acústica/métodos , Adulto , Corteza Auditiva/anatomía & histología , Mapeo Encefálico , Femenino , Humanos , Recién Nacido , Desarrollo del Lenguaje , Aprendizaje/fisiología , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Análisis Multivariante , Red Nerviosa/anatomía & histologíaRESUMEN
BACKGROUND/OBJECTIVES: Identifying novel variants in very rare disease genes can be challenging when patients exhibit a complex phenotype that expands the one described, and we provide such an example here. A few terminal truncating variants in KIDINS220 cause spastic paraplegia (SP), intellectual disability (ID), nystagmus, and obesity (SINO, MIM #617296). Prompted by the result of next-generation sequencing on a patient referred for SP associated with complex brain dysmorphisms, we reviewed the phenotype of SINO patients focusing on their brain malformations, mainly described in prenatal age and first years of life, and tried to understand if the predicted effect of the mutant kidins220 may have caused them. METHODS: We performed whole exome sequencing (WES) and a literature and mutation databases review. RESULTS: We report a young adult with SP, severe ID, strabismus, and macrocephaly exhibiting brain malformations at follow-up, partially overlapping with those described in TUBB3 tubulinopathy. WES analysis of the proband and parents identified the heterozygous de novo variant (NM_020738.4: c. 4144G > T) p. Glu 1382* in KIDINS220 that was predicted to be causative of SINO. CONCLUSIONS: The progression of myelination and the development of brain structures turned out to be crucial for identifying, at follow-up, the whole KIDINS220-related brain malformations. The truncated proteins associated with SINO lack a portion fundamental for the interaction of kidins220 with tubulins and microtubule-associated proteins. The complexity of the brain malformations displayed by our patient, and possibly by other reported SINO patients, could result from an impaired dynamic modulation of the microtubule cytoskeleton during embryogenesis. Brain malformations must be considered as part of the SINO spectrum phenotype.
Asunto(s)
Encéfalo , Discapacidad Intelectual , Humanos , Encéfalo/patología , Encéfalo/anomalías , Secuenciación del Exoma , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Fenotipo , Adulto JovenRESUMEN
Purpose To test the performance of a transformer-based model when manipulating pretraining weights, dataset size, and input size and comparing the best model with the reference standard and state-of-the-art models for a resting-state functional (rs-fMRI) fetal brain extraction task. Materials and Methods An internal retrospective dataset (172 fetuses, 519 images; collected 2018-2022) was used to investigate influence of dataset size, pretraining approaches, and image input size on Swin-U-Net transformer (UNETR) and UNETR models. The internal and external (131 fetuses, 561 images) datasets were used to cross-validate and to assess generalization capability of the best model versus state-of-the-art models on different scanner types and number of gestational weeks (GWs). The Dice similarity coefficient (DSC) and the balanced average Hausdorff distance (BAHD) were used as segmentation performance metrics. Generalized equation estimation multifactorial models were used to assess significant model and interaction effects of interest. Results The Swin-UNETR model was not affected by the pretraining approach and dataset size and performed best with the mean dataset image size, with a mean DSC of 0.92 and BAHD of 0.097. Swin-UNETR was not affected by scanner type. Generalization results on the internal dataset showed that Swin-UNETR had lower performance compared with the reference standard models and comparable performance on the external dataset. Cross-validation on internal and external test sets demonstrated better and comparable performance of Swin-UNETR versus convolutional neural network architectures during the late-fetal period (GWs > 25) but lower performance during the midfetal period (GWs ≤ 25). Conclusion Swin-UNTER showed flexibility in dealing with smaller datasets, regardless of pretraining approaches. For fetal brain extraction from rs-fMR images, Swin-UNTER showed comparable performance with that of reference standard models during the late-fetal period and lower performance during the early GW period. Keywords: Transformers, CNN, Medical Imaging Segmentation, MRI, Dataset Size, Input Size, Transfer Learning Supplemental material is available for this article. © RSNA, 2024.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Embarazo , Estudios Retrospectivos , Femenino , Feto/diagnóstico por imagen , Feto/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico Prenatal/métodos , Redes Neurales de la Computación , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
Background: Altered neurodevelopment is a major clinical sequela of Preterm Birth (PTB) being currently unexplored in-utero. Aims: To study the link between fetal brain functional (FbF) connectivity and preterm birth, using resting-state functional magnetic resonance imaging (rs-fMRI). Study design: Prospective single-centre cohort study. Subjects: A sample of 31 singleton pregnancies at 28-34 weeks assigned to a low PTB risk (LR) (n = 19) or high PTB risk (HR) (n = 12) group based on a) the Maternal Frailty Inventory (MaFra) for PTB risk; b) a case-specific PTB risk gradient. Methods: Fetal brain rs-fMRI was performed on 1.5T MRI scanner. First, directed causal relations representing fetal brain functional connectivity measurements were estimated using the Greedy Equivalence Search (GES) algorithm. HR vs. LR group differences were then tested with a novel ad-hoc developed Monte Carlo permutation test. Second, a MaFra-only random forest (RF) was compared against a MaFra-Neuro RF, trained by including also the most important fetal brain functional connections. Third, correlation and regression analyses were performed between MaFra-Neuro class probabilities and i) the GA at birth; ii) PTB risk gradient, iii) perinatal clinical conditions and iv) PTB below 37 weeks. Results: First, fewer fetal brain functional connections were evident in the HR group. Second, the MaFra-Neuro RF improved PTB risk prediction. Third, MaFra-Neuro class probabilities showed a significant association with: i) GA at birth; ii) PTB risk gradient, iii) perinatal clinical conditions and iv) PTB below 37 weeks. Conclusion: Fetal brain functional connectivity is a novel promising predictor of PTB, linked to maternal risk profiles, ahead of birth, and clinical markers of neurodevelopmental risk, at birth, thus potentially "connecting" different PTB phenotypes.
RESUMEN
Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.
Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis I , Humanos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/genética , Masculino , Femenino , Preescolar , Lactante , Resultado del Tratamiento , Células Madre Hematopoyéticas/metabolismo , Niño , Huesos/patología , Imagen por Resonancia MagnéticaAsunto(s)
Lateralidad Funcional , Trastornos Migrañosos/genética , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Electroencefalografía , Femenino , Lateralidad Funcional/genética , Humanos , Imagen por Resonancia Magnética , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/fisiopatologíaRESUMEN
In adults, specific neural systems with right-hemispheric weighting are necessary to process pitch, melody, and harmony as well as structure and meaning emerging from musical sequences. It is not known to what extent the specialization of these systems results from long-term exposure to music or from neurobiological constraints. One way to address this question is to examine how these systems function at birth, when auditory experience is minimal. We used functional MRI to measure brain activity in 1- to 3-day-old newborns while they heard excerpts of Western tonal music and altered versions of the same excerpts. Altered versions either included changes of the tonal key or were permanently dissonant. Music evoked predominantly right-hemispheric activations in primary and higher order auditory cortex. During presentation of the altered excerpts, hemodynamic responses were significantly reduced in the right auditory cortex, and activations emerged in the left inferior frontal cortex and limbic structures. These results demonstrate that the infant brain shows a hemispheric specialization in processing music as early as the first postnatal hours. Results also indicate that the neural architecture underlying music processing in newborns is sensitive to changes in tonal key as well as to differences in consonance and dissonance.