Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glia ; 65(11): 1821-1832, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28795438

RESUMEN

In the brain, neurons establish bona fide synapses onto oligodendrocyte precursor cells (OPCs), but the function of these neuron-glia synapses remains unresolved. A leading hypothesis suggests that these synapses regulate OPC proliferation and differentiation. However, a causal link between synaptic activity and OPC cellular dynamics is still missing. In the developing somatosensory cortex, OPCs receive a major type of synapse from GABAergic interneurons that is mediated by postsynaptic γ2-containing GABAA receptors. Here we genetically silenced these receptors in OPCs during the critical period of cortical oligodendrogenesis. We found that the inactivation of γ2-mediated synapses does not impact OPC proliferation and differentiation or the propensity of OPCs to myelinate their presynaptic interneurons. However, this inactivation causes a progressive and specific depletion of the OPC pool that lacks γ2-mediated synaptic activity without affecting the oligodendrocyte production. Our results show that, during cortical development, the γ2-mediated interneuron-to-OPC synapses do not play a role in oligodendrogenesis and suggest that these synapses finely tune OPC self-maintenance capacity. They also open the interesting possibility that a particular synaptic signaling onto OPCs plays a specific role in OPC function according to the neurotransmitter released, the identity of presynaptic neurons or the postsynaptic receptors involved.


Asunto(s)
Corteza Cerebral/citología , Neurogénesis/fisiología , Neuronas/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Antígenos/genética , Antígenos/metabolismo , Proteínas Relacionadas con la Autofagia , Calcio/metabolismo , Recuento de Células , Diferenciación Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Estadísticas no Paramétricas , Sinapsis/genética
2.
Cereb Cortex ; 25(4): 1114-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24217990

RESUMEN

NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes. Single-cell RT-PCR and the effects of zolpidem and α5IA on evoked GABAergic currents reveal the predominance of functional α1- and α5-containing GABA(A)Rs at interneuron-NG2 cell synapses in the second postnatal week, while the α5 expression declines later in development when responses are exclusively extrasynaptic. Importantly, pharmacological and molecular analyses demonstrate that γ2, a subunit contributing to the clustering of GABA(A)Rs at postsynaptic sites in neurons, is down-regulated in NG2 cells in a cell type-specific manner in concomitance with the decline of synaptic activity and the switch of transmission mode. In keeping with the synaptic nature of γ2 in neurons, the down-regulation of this subunit is an important molecular hallmark of the change of transmission modes between interneurons and NG2 cells during development.


Asunto(s)
Neocórtex/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Receptores de GABA-A/metabolismo , Sinapsis/fisiología , Animales , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación hacia Abajo , Estimulación Eléctrica , Agonistas de Receptores de GABA-A/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Neocórtex/efectos de los fármacos , Neocórtex/fisiología , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Piridinas/farmacología , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/fisiología , Sinapsis/efectos de los fármacos , Zolpidem , Ácido gamma-Aminobutírico/metabolismo
3.
Sci Rep ; 14(1): 5022, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424161

RESUMEN

The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs. Here, we have assessed the relevance of the PenkCre mouse line as a genetic model to target this embryonically-born population. In young animals, PenkCre expression allows to tag neurons in the DG with positional, morphological and electrophysiological properties characteristic of DGNs born during the embryonic period. In addition, PenkCre+ cells in the DG are distributed in both blades along the entire septo-temporal axis. This model thus offers new possibilities to explore the functions of this underexplored population of embryonically-born DGNs.


Asunto(s)
Giro Dentado , Neuronas , Animales , Ratones , Giro Dentado/fisiología , Neuronas/fisiología , Hipocampo , Neurogénesis/fisiología
4.
Fluids Barriers CNS ; 20(1): 24, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013659

RESUMEN

BACKGROUND: Oligodendrocyte lineage cells interact with the vasculature in the gray matter. Physical and functional interactions between blood vessels and oligodendrocyte precursor cells play an essential role in both the developing and adult brain. Oligodendrocyte precursor cells have been shown to migrate along the vasculature and subsequently detach from it during their differentiation to oligodendrocytes. However, the association of mature oligodendrocytes with blood vessels has been noted since the discovery of this glial cell type almost a century ago, but this interaction remains poorly explored. RESULTS: Here, we systematically investigated the extent of mature oligodendrocyte interaction with the vasculature in mouse brain. We found that ~ 17% of oligodendrocytes were in contact with blood vessels in the neocortex, the hippocampal CA1 region and the cerebellar cortex. Contacts were made mainly with capillaries and sparsely with larger arterioles or venules. By combining light and serial electron microscopy, we demonstrated that oligodendrocytes are in direct contact with the vascular basement membrane, raising the possibility of direct signaling pathways and metabolite exchange with endothelial cells. During experimental remyelination in the adult, oligodendrocytes were regenerated and associated with blood vessels in the same proportion compared to control cortex, suggesting a homeostatic regulation of the vasculature-associated oligodendrocyte population. CONCLUSIONS: Based on their frequent and close association with blood vessels, we propose that vasculature-associated oligodendrocytes should be considered as an integral part of the brain vasculature microenvironment. This particular location could underlie specific functions of vasculature-associated oligodendrocytes, while contributing to the vulnerability of mature oligodendrocytes in neurological diseases.


Asunto(s)
Neocórtex , Ratones , Animales , Células Endoteliales , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología , Vaina de Mielina
5.
Nat Commun ; 11(1): 5151, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051462

RESUMEN

Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine-tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits.


Asunto(s)
Corteza Cerebelosa/citología , Interneuronas/fisiología , Vaina de Mielina/metabolismo , Inhibición Neural , Parvalbúminas/metabolismo , Animales , Axones/metabolismo , Corteza Cerebelosa/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Oligodendroglía/fisiología , Parvalbúminas/genética
6.
Science ; 363(6425): 413-417, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30679375

RESUMEN

How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear. In this study, we investigated transcriptional dynamics in different classes of interneurons during the formation of cortical inhibitory circuits in mouse. We found that whether interneurons form synapses on the dendrites, soma, or axon initial segment of pyramidal cells is determined by synaptic molecules that are expressed in a subtype-specific manner. Thus, cell-specific molecular programs that unfold during early postnatal development underlie the connectivity patterns of cortical interneurons.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Sinapsis/genética , Sinapsis/fisiología , Animales , Dendritas/genética , Dendritas/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Piramidales/fisiología , Análisis de Secuencia de ARN , Transcripción Genética , Transcriptoma
7.
Elife ; 42015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25902404

RESUMEN

NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis.


Asunto(s)
Interneuronas/ultraestructura , Neocórtex/citología , Células-Madre Neurales/ultraestructura , Oligodendroglía/ultraestructura , Corteza Somatosensorial/citología , Potenciales de Acción/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Expresión Génica , Genes Reporteros , Interneuronas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microtomía , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Oligodendroglía/metabolismo , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA