Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroophthalmol ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665646

RESUMEN

BACKGROUND: Establishing a molecular diagnosis of mitochondrial diseases due to pathogenic mitochondrial DNA (mtDNA) variants can be difficult because of varying levels of tissue heteroplasmy, and identifying these variants is important for clinical management. Here, we present clinical and molecular findings in 8 adult patients with classical features of mitochondrial ophthalmologic and/or muscle disease and multiple mtDNA deletions isolated to muscle. METHODS: The patients were identified via a retrospective review of patients seen in both a tertiary ophthalmology center and a genetics clinic with a clinical diagnosis of chronic progressive external ophthalmoplegia, optic nerve abnormalities, and/or mitochondrial myopathy. Age at onset of symptoms ranged from 18 to 61 years. Ocular manifestations included bilateral optic neuropathy in one patient, bilateral optic disc cupping without optic neuropathy in 2 patients, ptosis in 4 patients, and ocular motility deficits in 2 patients. Five patients had generalized weakness. RESULTS: Pathogenic variants in mtDNA were not found in the blood or buccal sample from any patient, but 7 of 8 patients had multiple mtDNA deletions identified in muscle tissue. One patient had a single mtDNA deletion identified in the muscle. Heteroplasmy was less than 15% for all of the identified deletions, with the exception of one deletion that had a heteroplasmy of 50%-60%. None of the patients were found to have a nuclear gene variant known to be associated with mitochondrial DNA maintenance. CONCLUSIONS: mtDNA deletions were identified in adult patients with ophthalmologic and/or musle abnormalities and may underlie their clinical presentations.

2.
Hum Mutat ; 42(2): 177-188, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33259687

RESUMEN

The MT-TL1 gene codes for the mitochondrial leucine transfer RNA (tRNALeu(UUR) ) necessary for mitochondrial translation. Pathogenic variants in the MT-TL1 gene result in mitochondriopathy in humans. The m.3250T>C variant in the MT-TL1 gene has been previously associated with exercise intolerance and mitochondrial myopathy, yet disease classification for this variant has not been consistently reported. Molecular studies suggest the m.3250T>C variant does not alter tRNALeu(UUR) structure but may have a modest impact on aminoacylation capacity. However, functional studies are limited. Our study aimed to further define the clinical presentation, inheritance pattern, and molecular pathology of the m.3250T>C variant. Families with the m.3250T>C variant were recruited from the Mitochondrial Disease Clinic at Cincinnati Children's Hospital Medical Center and GeneDx laboratory database. Affected individuals most frequently presented with cardiac findings, exercise intolerance, and muscle weakness. Hypertrophic cardiomyopathy was the most frequent cardiac finding. Many asymptomatic individuals had homoplasmic or near homoplasmic levels of the m.3250T>C variant, suggesting the penetrance is incomplete. Patient-derived fibroblasts demonstrated lowered ATP production and increased levels of reactive oxygen species. Our results demonstrate that the m.3250T>C variant exhibits incomplete penetrance and may be a possible cause of cardiomyopathy by impacting cellular respiration in mitochondria.


Asunto(s)
Cardiomiopatías , Genoma Mitocondrial , Miopatías Mitocondriales , Cardiomiopatías/genética , Niño , ADN Mitocondrial/genética , Humanos , Miopatías Mitocondriales/genética , Mutación , ARN de Transferencia de Leucina/química , ARN de Transferencia de Leucina/genética , Factores de Riesgo
3.
Genet Med ; 23(8): 1514-1521, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33846581

RESUMEN

PURPOSE: Reports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant-like mode. The authenticity and frequency of these findings are debated. METHODS: We retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study. RESULTS: We identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype. CONCLUSION: These findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.


Asunto(s)
ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , Haplotipos , Humanos , Masculino , Mitocondrias/genética , Fenotipo , Estudios Retrospectivos
5.
J Pediatr Genet ; 6(3): 155-164, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28794907

RESUMEN

Retinoic acid induced 1 ( RAI1 ) encodes a dosage-sensitive gene that when haploinsufficient results in Smith-Magenis syndrome (SMS) and when overexpressed results in Potocki-Lupski syndrome (PTLS). Phenotypic and molecular evidence illustrates that haploinsufficiency of RAI1 disrupts circadian rhythm through the dysregulation of the master circadian regulator, circadian locomotor output cycles kaput ( CLOCK) , and other core circadian components, contributing to prominent sleep disturbances in SMS. However, the phenotypic and molecular characterization of sleep features in PTLS has not been elucidated. Using the Pittsburgh Sleep Quality Index (PSQI), caregivers of 15 school-aged children with PTLS reported difficulties in initiating sleep. Indeed, more than 70% of individuals manifested moderate to severe sleep latency, as defined by the PSQI. Moreover, these individuals manifested difficulties in sleep maintenance, with middle of the night and early morning awakenings. When assessing daytime sleepiness through the Epworth Sleepiness Scale, approximately 21% of the individuals manifested excessive daytime somnolence. This indicates that mild dyssomnia characterizes the majority of the sleep phenotype, with occasionally problematic daytime somnolence, a phenotype different than that expressed by individuals with SMS, where daytime sleepiness is a chronic problem. Gene expression analysis of the core circadian machinery in the hypothalamus of the PTLS mouse model ( Rai1 -Tg) found significant dysregulation of the transcriptional activators, Clock and Arntl , and the transcriptional repressors, Per1-3 and Cry1/2 , during both light and dark phases. These findings suggest a partial loss of circadian entrainment typically evoked by environmental photic cues. Examination of circadian clock gene expression in the Rai1- Tg mouse heart, liver, and kidney found unchanged expression of Clock and most of its downstream targets during both light and dark phases, suggesting an asynchronized circadian rhythm. Furthermore, examination of circadian gene expression in synchronized PTLS lymphoblasts revealed reduced transcripts of the Period ( PER1-3 ) family and normal expression of CRY1/2 . The finding that central circadian gene expression was altered while many peripheral circadian components were intact suggests a tissue-specific circadian uncoupling of the circadian machinery due to Rai1 overexpression. Overall, our results demonstrate that overexpression of RAI1 results in sleep deficiencies in individuals with PTLS due to a lack of properly regulated circadian machinery gene expression and highlight the importance of evaluating sleep concerns in individuals with PTLS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA