Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 19(21)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684017

RESUMEN

Mercury is considered the most hazardous pollutant of aquatic resources; it exerts numerous adverse effects on environmental and human health. To date, significant progress has been made in employing a variety of nanomaterials for the colorimetric detection of mercury ions. Electrospun nanofibers exhibit several beneficial features, including a large surface area, porous nature, and easy functionalization; thus, providing several opportunities to encapsulate a variety of functional materials for sensing applications with enhanced sensitivity and selectivity, and a fast response. In this review, several examples of electrospun nanofiber-based sensing platforms devised by utilizing the two foremost approaches, namely, direct incorporation and surface decoration envisioned for detection of mercury ions are provided. We believe these examples provide sufficient evidence for the potential use and progress of electrospun nanofibers toward colorimetric sensing of mercury ions. Furthermore, the summary of the review is focused on providing an insight into the future directions of designing electrospun nanofiber-based, metal ion colorimetric sensors for practical applications.

2.
Anal Bioanal Chem ; 408(5): 1285-306, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26573168

RESUMEN

The worldwide increase in the number of people suffering from diabetes has been the driving force for the development of glucose sensors. The recent past has devised various approaches to formulate glucose sensors using various nanostructure materials. This review presents a combined survey of these various approaches, with emphasis on the current progress in the use of electrospun nanofibers and their composites. Outstanding characteristics of electrospun nanofibers, including high surface area, porosity, flexibility, cost effectiveness, and portable nature, make them a good choice for sensor applications. Particularly, their nature of possessing a high surface area makes them the right fit for large immobilization sites, resulting in increased interaction with analytes. Thus, these electrospun nanofiber-based glucose sensors present a number of advantages, including increased life time, which is greatly needed for practical applications. Taking all these facts into consideration, we have highlighted the latest significant developments in the field of glucose sensors across diverse approaches.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Glucosa/química , Nanofibras/química , Nanotecnología/instrumentación , Animales , Humanos
3.
Anal Bioanal Chem ; 408(5): 1347-55, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637215

RESUMEN

We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Oro/química , Peróxido de Hidrógeno/análisis , Membranas Artificiales , Nanopartículas del Metal/química , Nanofibras/química , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie
4.
J Colloid Interface Sci ; 593: 162-171, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33744527

RESUMEN

HYPOTHESIS: Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge. EXPERIMENTS: Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment. FINDINGS: The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5 °C to 50 °C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalytic analysis emphasized that ZHT shows higher photocatalytic activity than ZNP. This finding has made an evident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water.


Asunto(s)
Nanofibras , Nanoestructuras , Óxido de Zinc , Polímeros , Agua
5.
J Control Release ; 326: 482-509, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721525

RESUMEN

Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.


Asunto(s)
Nanofibras , Preparaciones Farmacéuticas , Administración Oral , Sistemas de Liberación de Medicamentos , Polímeros
6.
Materials (Basel) ; 13(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466258

RESUMEN

The increasing heavy metal pollution in the aquatic ecosystem mainly driven by industrial activities has raised severe concerns over human and environmental health that apparently necessitate the design and development of ideal strategies for the effective monitoring of heavy metals. In this regard, colorimetric detection provides excellent opportunities for the easy monitoring of heavy metal ions, and especially, corresponding solid-state sensors enable potential opportunities for their applicability in real-world monitoring. As a result of the significant interest originating from their simplicity, exceptional characteristics, and applicability, the electrospun nanofiber-based colorimetric detection of heavy metal ions has undergone radical developments in the recent decade. This review illustrates the range of various approaches and functional molecules employed in the fabrication of electrospun nanofibers intended for the colorimetric detection of various metal ions in water. We highlight relevant investigations on the fabrication of functionalized electrospun nanofibers encompassing different approaches and functional molecules along with their sensing performance. Furthermore, we discuss upcoming prospectus and future opportunities in the exploration of designing electrospun nanofiber-based colorimetric sensors for real-world applications.

7.
ACS Appl Bio Mater ; 2(8): 3128-3143, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35030757

RESUMEN

Bioencapsulation has gained substantial attention in a wide spectrum of applications including bioremediation, sensing, and catalysis over the past few decades. However, such biohybrid systems suffer with many drawbacks in terms of low viability, low diffusion, and loss of biological activity. Therefore, it is more important to preserve the pristine characteristics and activity of biological elements against various environmental factors. In recent years, electrospinning has been acknowledged as a feasible technique for fabricating biohybrid fibrous composites by incorporating various biological materials using several approaches including direct encapsulation, core-shell encapsulation, and surface immobilization. In this review, the recent developments on the different methodologies in encapsulation and immobilization of microbial cells (i.e., bacteria, algae, viruses, and yeast) in electrospun nanofibers and their potential applications in bioremediation, food, agriculture, biocatalysis, regenerative medicine, etc. are briefly summarized. Further, ongoing challenges and future outlook in the electrospun nanofibrous biohybrid composites fabrication are concluded.

8.
Nanoscale Adv ; 1(11): 4258-4267, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134398

RESUMEN

Smart, stimuli-responsive, photoluminescent materials that undergo a visually perceptible emission color change in the presence of an external stimulus have long been attractive for use in sensor platforms. When the stimulus is the presence of water, the materials that undergo changes in their light emission properties are called hydrochromic and they can be used for the development of sensors to detect and quantify the water content in organic solvents, which is fundamental for laboratory safety and numerous industrial applications. Herein, we demonstrate the preparation of structurally different carbon dots with tunable emission wavelengths via a simple carbonization approach under controlled temperature and time, involving commercial brown sugar as a starting material. The detailed experimental analysis reveals the "structure-hydrochromic property" relationship of the carbon dots and assesses their capability as effective water sensors. The carbon dots that were proved most efficient for the specific application were then used to identify the presence of water in various aprotic and protic organic solvents via a sensing mechanism based either on the fluorescence wavelength shift or on the fluorescence intensity enhancement, respectively, attributed to the formation of intermolecular hydrogen bonds between carbon dots and water molecules. This is the first demonstration of structurally defined carbon dots in a specific application. The developed carbon dots, apart from being environmentally friendly, were proved to also be biocompatible, enabling this presented process to be a path to "green" sensors.

9.
Sci Rep ; 5: 15608, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26489771

RESUMEN

Here, a distinct demonstration of highly sensitive and selective detection of copper (Cu(2+)) in a vastly porous cellulose acetate fibers (pCAF) has been carried out using dithiothreitol capped gold nanocluster (DTT.AuNC) as fluorescent probe. A careful optimization of all potential factors affecting the performance of the probe for effective detection of Cu(2+) were studied and the resultant sensor strip exhibiting unique features including high stability, retained parent fluorescence nature and reproducibility. The visual colorimetric detection of Cu(2+) in water, presenting the selective sensing performance towards Cu(2+) ions over Zn(2+), Cd(2+) and Hg(2+) under UV light in naked eye, contrast to other metal ions that didn't significantly produce such a change. The comparative sensing performance of DTT.AuNC@pCAF, keeping the nonporous CA fiber (DTT.AuNC@nCAF) as a support matrix has been demonstrated. The resulting weak response of DTT.AuNC@nCAF denotes the lack of ligand protection leading to the poor coordination ability with Cu(2+). The determined detection limit (50 ppb) is far lower than the maximum level of Cu(2+) in drinking water (1.3 ppm) set by U.S. Environmental Protection Agency (EPA). An interesting find from this study has been the specific oxidation nature between Cu(2+) and DTT.AuNC, offering solid evidence for selective sensors.

10.
Environ Sci Process Impacts ; 17(7): 1265-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26022751

RESUMEN

This study demonstrates the acute toxicity of lanthanum oxide nanoparticles (La2O3 NP) on two sentinel aquatic species, fresh-water microalgae Chlorella sp. and the crustacean Daphnia magna. The morphology, size and charge of the nanoparticles were systematically studied. The algal growth inhibition assay confirmed absence of toxic effects of La2O3 NP on Chlorella sp., even at higher concentration (1000 mg L(-1)) after 72 h exposure. Similarly, no significant toxic effects were observed on D. magna at concentrations of 250 mg L(-1) or less, and considerable toxic effects were noted in higher concentrations (effective concentration [EC50] 500 mg L(-1); lethal dose [LD50] 1000 mg L(-1)). In addition, attachment of La2O3 NP on aquatic species was demonstrated using microscopy analysis. This study proved to be beneficial in understanding acute toxicity in order to provide environmental protection as part of risk assessment strategies.


Asunto(s)
Lantano/toxicidad , Nanopartículas/toxicidad , Óxidos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Chlorophyta , Daphnia , Agua Dulce , Microalgas , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA