Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Langmuir ; 39(32): 11388-11397, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37539945

RESUMEN

Gas adsorption in zeolites leads to adsorption-induced deformation, which can significantly affect the adsorption and diffusive properties of the system. In this study, we conducted both experimental investigations and molecular simulations to understand the deformation of zeolites 13X and 4A during carbon dioxide adsorption at 273 K. To measure the sample's adsorption isotherm and strain simultaneously, we used a commercial sorption instrument with a custom-made sample holder equipped with a dilatometer. Our experimental data showed that while the zeolites 13X and 4A exhibited similar adsorption isotherms, their strain isotherms differed significantly. To gain more insight into the adsorption process and adsorption-induced deformation of these zeolites, we employed coupled Monte Carlo and molecular dynamics simulations with atomistically detailed models of the frameworks. Our modeling results were consistent with the experimental data and helped us identify the reasons behind the different deformation behaviors of the considered structures. Our study also revealed the sensitivity of the strain isotherm of zeolites to pore size and other structural and energetic features, suggesting that measuring adsorption-induced deformation could serve as a complementary method for material characterization and provide guidelines for related technical applications.

2.
Langmuir ; 38(31): 9631-9639, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35900873

RESUMEN

The impact of synthesis parameters and structural properties, respectively, on mechanical properties of porous materials on different structural levels provides valuable information for designing materials for specific applications. Within this study, we apply two nonstandard approaches for determining the mechanical properties of the mesoporous backbone phase in a series of disordered SiO2-based monolithic materials possessing hierarchical meso-macroporosity, that is, deformation upon mercury porosimetry and in situ dilatometry during nitrogen adsorption analysis. By using ordered porous model materials, the latter method has been recently proven to provide reliable mechanical moduli. This concept was now applied to a SiO2 monolith developed for high-performance liquid chromatography exhibiting disordered hierarchical meso- and macroporosity, as well as a series of analogue phenyl-modified meso-macroporous SiO2 monoliths with up to 36.1 at% organic modification. The phenyl group was introduced by adding phenyltrimethoxysilane to the sol-gel mixture. The study aimed at investigating in detail the impact of the organic modification on the morphology of the porous solid and the resulting mechanical properties. The study shows that both Hg porosimetry and in situ dilatometry performed during N2 adsorption at 77 K provide similar and reasonable moduli of compression for the mesoporous backbone of the silica materials investigated. These data were compared with moduli of the macroscopic sample as determined from sound velocity measurements by describing the fully connected macroporous backbone with a foam model. The comparison reveals an otherwise overseen side effect of the organic modification of the silica framework: in contrast to the pure reference SiO2 meso-macroporous monoliths, the hybrid material is composed of a more particulate morphology on the mesoscale, that is, mesoporous particles and corresponding necks between them are formed, which results in significant softening of the porous solid on the macroscale.

3.
Langmuir ; 35(8): 2948-2956, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30667221

RESUMEN

Mechanical properties of hierarchically structured nanoporous materials are determined by the solid phase stiffness and the pore network morphology. We analyze the mechanical stiffness of hierarchically structured silica monoliths synthesized via a sol-gel process, which possess a macroporous scaffold built of interconnected struts with hexagonally ordered cylindrical mesopores. We consider samples with and without microporosity within the mesopore walls and analyze them on the macroscopic level as well as on the microscopic level of the mesopores. Untreated as-prepared samples still containing some organic components and the respective calcined and sintered counterparts of varying microporosity are investigated. To determine Young's moduli on the level of the macroscopic monoliths, we apply ultrasonic run time measurements, while Young's moduli of the mesopore walls are obtained by analysis of the in situ strain isotherms during N2 adsorption at 77 K. For the latter, we extended our previously reported theoretical approach for this type of materials by incorporating the micropore effects, which are clearly not negligible in the calcined and most of the sintered samples. The comparison of the macro- and microscopic Young's moduli reveals that both properties follow essentially the same trends, that is, calcination and sintering increase the mechanical stiffness on both levels. Consequently, stiffening of the monolithic samples can be primarily attributed to stiffening of the backbone material which is consistent with the fact that the morphology on the mesopore level is mainly preserved with the post-treatments applied.

4.
Langmuir ; 35(35): 11590-11600, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31379170

RESUMEN

Adsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data. Thus, SANS essentially measured the radial strain of the cylindrical mesopores including the volume changes of the mesopore walls due to micropore deformation. A H2O/D2O adsorbate with net zero coherent neutron scattering length density was employed in order to avoid apparent strain effects due to intensity changes during pore filling. In contrast to SANS, the strain isotherms obtained from in situ dilatometry result from a combination of axial and radial mesopore deformation together with micropore deformation. Strain data were quantitatively analyzed with a theoretical model for micro-/mesopore deformation by combining information from nitrogen and water adsorption isotherms to estimate the water-silica interaction. It was shown that in situ SANS provides complementary information to dilatometry and allows for a quantitative estimate of the elastic properties of the mesopore walls from water adsorption.

5.
Langmuir ; 33(22): 5592-5602, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28547995

RESUMEN

The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

6.
Nature ; 478(7369): 337-42, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21993620

RESUMEN

Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Abastecimiento de Alimentos , Dieta , Ambiente , Humanos , Modelos Teóricos
7.
Langmuir ; 32(32): 8265-74, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27420036

RESUMEN

Using the nonlocal density functional theory, we investigate adsorption of N2 (77 K), Ar (77 K), and CO2 (273 K) and respective adsorption-induced deformation of microporous carbons. We show that the smallest micropores comparable in size and even smaller than the nominal molecular diameter of the adsorbate contribute significantly to the development of the adsorption stress. While pores of approximately the nominal adsorbate diameter exhibit no adsorption stress regardless of their filling level, the smaller pores cause expansive adsorption stresses up to almost 4 GPa. Accounting for this effect, we determined the pore-size distribution of a synthetic microporous carbon by simultaneously fitting its experimental CO2 adsorption isotherm (273 K) and corresponding adsorption-induced strain measured by in situ dilatometry. Based on the pore-size distribution and the elastic modulus fitted from CO2 data, we predicted the sample's strain isotherms during N2 and Ar adsorption (77 K), which were found to be in reasonable agreement with respective experimental data. The comparison of calculations and experimental results suggests that adsorption-induced deformation caused by micropores is not limited to the low relative pressures typically associated with the micropore filling, but is effective over the whole relative pressure range up to saturation pressure.

8.
Langmuir ; 31(45): 12512-9, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26506409

RESUMEN

Adsorption-induced deformation of a monolithic, synthetic carbon of clearly distinguishable micro- and mesoporosity was analyzed by in situ dilatometry with N2 (77 K), Ar (77 K), CO2 (273 K), and H2O (298 K). A characteristic nonmonotonic shape of the strain isotherm showing contraction of the sample at initial micropore adsorption followed by expansion toward completion of micropore filling was found for all adsorbates. However, the extent of contraction and expansion varied significantly with the adsorbate type. The deformation differences observed were compared with the density ratio of the adsorbates within the micropores and the respective unconfined fluids. In particular, CO2 caused the least contraction of the sample, while in parallel adsorbed CO2 molecules were predicted to be considerably compacted inside carbon micropores compared to bulk liquid CO2. On the contrary, the packing of H2O molecules within carbon micropores is less dense than in the bulk liquid and adsorption of H2O produced the most pronounced contraction. N2 and Ar, both exhibiting essentially the same densities in adsorbed and bulk liquid phase, induced very similar deformation of the sample. These findings support theoretical predictions, which correlate adsorption-induced deformation and packing of molecules adsorbed in micropores. Additionally for the first time, we demonstrated with the N2 strain isotherm the existence of two nonmonotonic stages of subsequent contraction and expansion in the regions of micropore and mesopore filling. This characteristic behavior is expected for any micro- and mesoporous material.

9.
Proc Natl Acad Sci U S A ; 108(50): 20260-4, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22106295

RESUMEN

Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Abastecimiento de Alimentos , Internacionalidad , Clima , Productos Agrícolas/economía , Abastecimiento de Alimentos/economía , Producto Interno Bruto
10.
Ecol Lett ; 16(1): 22-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23050931

RESUMEN

The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.


Asunto(s)
Culicidae/fisiología , Malaria/transmisión , Modelos Biológicos , Plasmodium falciparum/fisiología , Temperatura , Animales , Cambio Climático , Culicidae/parasitología , Femenino , Interacciones Huésped-Parásitos , Humanos
11.
Cortex ; 164: 63-76, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201378

RESUMEN

The detection of right temporal lobe dysfunction with nonverbal memory tests has remained difficult in the past. Reasons for this might be the potential influence of other biasing cognitive functions such as executive functions or the verbalisability of nonverbal material. The aim of this study was to investigate three classic nonverbal memory tests by identifying their neuroanatomical correlates with lesion-symptom mapping (LSM) and by probing their independence from verbal encoding abilities and executive functions. In a cohort of 119 patients with first-time cerebrovascular accident, memory performance was assessed in the Nonverbal Learning and Memory Test for Routes (NLMTR), the Rey Complex Figure Test (RCFT), and the Visual Design Learning Test (VDLT). Calculating multivariate LSM, we identified crucial brain structures for these three nonverbal memory tests. Behavioural analyses were performed to assess the impact of executive functions and verbal encoding abilities with regression analyses and likelihood-ratio tests. LSM revealed for the RCFT mainly right-hemispheric frontal, insular, subcortical, and white matter structures and for the NLMTR right-hemispheric temporal (hippocampus), insular, subcortical, and white matter structures. The VDLT did not reach significance in LSM analyses. Behavioural results showed that amongst the three nonverbal memory tests the impact of executive functions was most pronounced for RCFT, and the impact of verbal encoding abilities was most important in VDLT. Likelihood-ratio tests confirmed that only for NLMTR did the goodness of fit not significantly improve by adding executive functions or verbal encoding abilities. These results suggest that amongst the three nonverbal memory tests the NLMTR, as a spatial navigation test, could serve as the most suitable marker of right-hemispheric temporal lobe functioning, with the right hippocampus being involved only in this test. In addition, the behavioural results propose that only NLMTR seems mostly unaffected by executive functions and verbal encoding abilities.


Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Humanos , Trastornos de la Memoria/psicología , Pruebas Neuropsicológicas , Cognición , Memoria , Función Ejecutiva
12.
Cortex ; 153: 178-193, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679643

RESUMEN

Memory disorders are a common consequence of cerebrovascular accident (CVA). However, uncertainties remain about the exact anatomical correlates of memory impairment and the material-specific lateralization of memory function in the brain. We used lesion-symptom mapping (LSM) in patients with first-time CVA to identify which brain structures are pivotal for verbal and nonverbal memory and to re-examine whether verbal and nonverbal memory functions are lateralized processes in the brain. The cognitive performance of a relatively large cohort of 114 patients in five classic episodic memory tests was analysed with factor analysis. Two factors were extracted that distinguished the verbal and nonverbal components of these memory tests, and their scores were subsequently tested for anatomical correlates by combining univariate and multivariate LSM. LSM analysis revealed for the verbal factor exclusively left-hemispheric insular, subcortical and adjacent white matter regions and for the nonverbal factor exclusively right-hemispheric temporal, occipital, insular, subcortical and adjacent white matter structures. These results corroborate the long-standing hypothesis of a material-specific lateralization of memory function in the brain and confirm a robust association between right temporal lobe lesions and nonverbal memory dysfunction. The right-hemispheric correlates for the nonverbal aspects of episodic memory include not only classic memory structures in the medial temporal lobe but also a more distributed network that includes cortical and subcortical structures also known for implicit memory processes.


Asunto(s)
Memoria Episódica , Lóbulo Temporal , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Trastornos de la Memoria , Pruebas Neuropsicológicas
13.
Langmuir ; 27(6): 2553-60, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21341778

RESUMEN

N2 and CO2 sorption measurements with in situ dilatometry implemented in a commercial volumetric sorption instrument were performed at 77 and 273 K, respectively. The resolution of the linear deformation was about ±0.2 µm. To separate effects due to microporosity, external surface area and mesopores synthetic porous carbons (xerogels) with different external surface areas and microporosities were applied as a model system. The experimental data show that the relative length change of the monolithic carbon xerogels investigated passes different stages during ad- and desorption, which are connected to micropore-, multilayer- and mesopore-sorption. The length change observed in the range of micropore and surface adsorption was found to be nonmonotonic and to take negative as well as positive values, with the maximum swelling observed being on the order of 4‰. With respect to the length change, the micropore structure seems to have the most significant impact on the overall length change, while the external surface is only of minor importance. Quantiative analysis of the deformation according to the models of Bangham and Scherer for the length change in the range of multilayer- and mesopore-adsorption allows extracting the macrosopic as well as the skeletal Young's modulus.

14.
Chem Mater ; 29(18): 7969-7975, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28989232

RESUMEN

Structural hierarchy, porosity, and isotropy/anisotropy are highly relevant factors for mechanical properties and thereby the functionality of porous materials. However, even though anisotropic and hierarchically organized, porous materials are well known in nature, such as bone or wood, producing the synthetic counterparts in the laboratory is difficult. We report for the first time a straightforward combination of sol-gel processing and shear-induced alignment to create hierarchical silica monoliths exhibiting anisotropy on the levels of both, meso- and macropores. The resulting material consists of an anisotropic macroporous network of struts comprising 2D hexagonally organized cylindrical mesopores. While the anisotropy of the mesopores is an inherent feature of the pores formed by liquid crystal templating, the anisotropy of the macropores is induced by shearing of the network. Scanning electron microscopy and small-angle X-ray scattering show that the majority of network forming struts is oriented towards the shearing direction; a quantitative analysis of scattering data confirms that roughly 40% of the strut volume exhibits a preferred orientation. The anisotropy of the material's macroporosity is also reflected in its mechanical properties; i.e., the Young's modulus differs by nearly a factor of 2 between the directions of shear application and perpendicular to it. Unexpectedly, the adsorption-induced strain of the material exhibits little to no anisotropy.

15.
Arch Clin Neuropsychol ; 30(3): 217-27, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25779599

RESUMEN

Neuropsychologists often face interpretational difficulties when assessing cognitive deficits, particularly in cases of unclear cerebral etiology. How can we be sure whether a single test score below the population average is indicative of a pathological brain condition or normal? In the past few years, the topic of intra-individual performance variability has gained great interest. On the basis of a large normative sample, two measures of performance variability and their importance for neuropsychological interpretation will be presented in this paper: the number of low scores and the level of dispersion. We conclude that low scores are common in healthy individuals. On the other hand, the level of dispersion is relatively small. Here, base rate information about abnormally low scores and abnormally high dispersion across cognitive abilities are provided to improve the awareness of normal variability and to serve clinicians as additional interpretive measures in the diagnostic process.


Asunto(s)
Encefalopatías/complicaciones , Trastornos del Conocimiento/diagnóstico , Pruebas Neuropsicológicas , Adolescente , Adulto , Anciano , Trastornos del Conocimiento/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Trials ; 16: 546, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631161

RESUMEN

BACKGROUND: A majority of stroke survivors present with cognitive impairments. Attention disturbance, which leads to impaired concentration and overall reduced cognitive functions, is strongly associated with stroke. The clinical efficacy of acupuncture with Baihui (GV20) and Shenting (GV24) as well as computer-assisted cognitive training in stroke and post-stroke cognitive impairment have both been demonstrated in previous studies. To date, no systematic comparison of these exists and the potential beneficial effects of a combined application are yet to be examined. The main objective of this pilot study is to evaluate the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The second objective is to test the effects of a combined cognitive intervention that incorporates computer-assisted cognitive training and acupuncture (ACoTrain). METHODS/DESIGN: An international multicentre, single-blinded, randomised controlled pilot trial will be conducted. In a 1:1:1 ratio, 60 inpatients with post-stroke cognitive dysfunction will be randomly allocated into either the acupuncture group, the computer-assisted cognitive training group, or the ACoTrain group in addition to their individual rehabilitation programme. The intervention period of this pilot trial will last 4 weeks (30 minutes per day, 5 days per week, Monday to Friday). The primary outcome is the test battery for attentional performance. The secondary outcomes include the Trail Making Test, Test des Deux Barrages, National Institute of Health Stroke Scale, and Modified Barthel Index for assessment of daily life competence, and the EuroQol Questionnaire for health-related quality of life. DISCUSSION: This trial mainly focuses on evaluating the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The results of this pilot trial are expected to provide new insights on how Eastern and Western medicine can complement one another and improve the treatment of cognitive impairments in early stroke rehabilitation. Including patients with different cultural backgrounds allows a more generalisable interpretation of the results but also poses risks of performance bias. Using standardised and well-described assessments, validated for each region, is pivotal to allow pooling of the data. TRIAL REGISTRATION: Clinical Trails.gov ID: NCT02324959 (8 December 2014).


Asunto(s)
Terapia por Acupuntura , Trastornos del Conocimiento/rehabilitación , Cognición , Terapia Cognitivo-Conductual/métodos , Rehabilitación de Accidente Cerebrovascular , Terapia Asistida por Computador , Actividades Cotidianas , Atención , China , Protocolos Clínicos , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/psicología , Terapia Combinada , Evaluación de la Discapacidad , Alemania , Humanos , Pruebas Neuropsicológicas , Proyectos Piloto , Calidad de Vida , Proyectos de Investigación , Método Simple Ciego , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/psicología , Encuestas y Cuestionarios , Suiza , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA