RESUMEN
Most modern energy resolving, photon counting detectors employ small (sub 1 mm) pixels for high spatial resolution and low per pixel count rate requirements. These small pixels can suffer from a range of charge sharing effects (CSEs) that degrade both spectral analysis and imaging metrics. A range of charge sharing correction algorithms (CSCAs) have been proposed and validated by different groups to reduce CSEs, however their performance is often compared solely to the same system when no such corrections are made. In this paper, a combination of Monte Carlo and finite element methods are used to compare six different CSCAs with the case where no CSCA is employed, with respect to four different metrics: absolute detection efficiency, photopeak detection efficiency, relative coincidence counts, and binned spectral efficiency. The performance of the various CSCAs is explored when running on systems with pixel pitches ranging from 100 µm to 600µm, in 50 µm increments, and fluxes from 106 to 108 photons mm-2 s-1 are considered. Novel mechanistic explanations for the difference in performance of the various CSCAs are proposed and supported. This work represents a subset of a larger project in which pixel pitch, thickness, flux, and CSCA are all varied systematically.
RESUMEN
Glioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12-15 months following standard therapy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR-specific affibody (ZEGFR:03115 ) was conjugated to the phthalocyanine dye, IR700DX, which when excited with near-infrared light produces a cytotoxic response. ZEGFR:03115 -IR700DX EGFR-specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro, in GBM cell lines and spheroids by the CellTiter-Glo® assay, and in vivo using subcutaneous U87-MGvIII xenografts. In addition, mice were imaged pre- and post-PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate correlated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor-dependent response between the tested cell lines. Inhibition of EGFRvIII+ve tumor growth was observed following administration of the immunoconjugate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115 -IR700DX showed specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof-of-concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Inmunoconjugados/farmacología , Inmunoterapia , Fototerapia , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Inmunoterapia/métodos , Ratones , Imagen Molecular , Fototerapia/métodos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: Three-dimensional surface imaging (3D-SI) of the breasts enables the measurement of breast volume and shape symmetry. If these measurements were sufficiently accurate and repeatable, they could be used in planning oncological breast surgery and as an objective measure of aesthetic outcome. The aim of this study was to validate the measurements of breast volume and symmetry provided by the Vectra XT imaging system. METHODS: To validate measurements, breast phantom models of true volume between 100 and 1000 cm3 were constructed and varying amounts removed to mimic breast tissue 'resections'. The volumes of the phantoms were measured using 3D-SI by two observers and compared to a gold standard. For intra-observer repeatability and inter-observer reproducibility in vivo, 16 patients who had undergone oncological breast surgery had breast volume and symmetry measured three times by two observers. RESULTS: A mean relative difference of 2.17 and 2.28% for observer 1 and 2 respectively was seen in the phantom measurements compared to the gold standard (n = 45, Bland Altman agreement). Intra-observer variation over ten repeated measurements demonstrated mean coefficients of variation (CV) of 0.58 and 0.49%, respectively. The inter-observer variation demonstrated a mean relative difference of 0.11% between the two observers. In patients, intra-observer variation over three repeated volume measurements for each observer was 3.9 and 3.8% (mean CV); the mean relative difference between observers was 5.78%. For three repeated shape symmetry measurements using RMS projection difference between the two breasts, the intra-observer variations were 8 and 14% (mean CV), the mean relative difference between observers was 0.43 mm for average symmetry values that ranged from about 3.5 to 15.5 mm. CONCLUSION: This first validation of breast volume and shape symmetry measurements using the Vectra XT 3D-SI system suggests that these measurements have the potential to assist in pre-operative planning and also as a measure of aesthetic outcome.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Imagenología Tridimensional/métodos , Glándulas Mamarias Humanas/patología , Adulto , Neoplasias de la Mama/cirugía , Femenino , Humanos , Imagenología Tridimensional/normas , Mamoplastia , Persona de Mediana Edad , Variaciones Dependientes del Observador , Tamaño de los Órganos , Fantasmas de Imagen , Cuidados Posoperatorios , Reproducibilidad de los ResultadosRESUMEN
Non-alcoholic fatty liver disease (NAFLD) is a significant cause of diffuse liver disease, morbidity and mortality worldwide. Early and accurate diagnosis of NALFD is critical to identify patients at risk of disease progression. Liver biopsy is the current gold standard for diagnosis and prognosis. However, a non-invasive diagnostic tool is desired because of the high cost and risk of complications of tissue sampling. Medical ultrasound is a safe, inexpensive and widely available imaging tool for diagnosing NAFLD. Emerging sonographic tools to quantitatively estimate hepatic fat fraction, such as tissue sound speed estimation, are likely to improve diagnostic accuracy, precision and reproducibility compared with existing qualitative and semi-quantitative techniques. Various pulse-echo ultrasound speed of sound estimation methodologies have been investigated, and some have been recently commercialized. We review state-of-the-art in vivo speed of sound estimation techniques, including their advantages, limitations, technical sources of variability, biological confounders and existing commercial implementations. We report the expected range of hepatic speed of sound as a function of liver steatosis and fibrosis that may be encountered in clinical practice. Ongoing efforts seek to quantify sound speed measurement accuracy and precision to inform threshold development around meaningful differences in fat fraction and between sequential measurements.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Reproducibilidad de los Resultados , Ultrasonido , Hígado/diagnóstico por imagen , Hígado/patología , Ultrasonografía/métodos , Imagen por Resonancia MagnéticaRESUMEN
Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapies would be accelerated by imaging biomarkers that inform on therapeutic efficacy in vivo. Here, PEGPH20 response was assessed by multiparametric magnetic resonance imaging (MRI) in three orthotopic breast tumour models. Treatment of 4T1/HAS3 tumours, the model with the highest HA accumulation, reduced T1 and T2 relaxation times and the apparent diffusion coefficient (ADC), and increased the magnetisation transfer ratio, consistent with lower tissue water content and collapse of the extracellular space. The transverse relaxation rate R2 * increased, consistent with greater erythrocyte accessibility following vascular decompression. Treatment of MDA-MB-231 LM2-4 tumours reduced ADC and dramatically increased tumour viscoelasticity measured by MR elastography. Correlation matrix analyses of data from all models identified ADC as having the strongest correlation with HA accumulation, suggesting that ADC is the most sensitive imaging biomarker of tumour response to PEGPH20.
Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Femenino , Ácido Hialurónico/metabolismo , Microambiente Tumoral , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Imagen por Resonancia Magnética/métodosRESUMEN
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
RESUMEN
BACKGROUND: ultrasound-based shear wave elastography (SWE) can non-invasively assess prostate tissue stiffness. This systematic review aims to evaluate SWE for the detection of prostate cancer (PCa) and compare diagnostic estimates between studies reporting the detection of all PCa and clinically significant PCa (csPCa). METHODS: a literature search was performed using the MEDLINE, EMBASE, Cochrane Library, ClinicalTrials.gov, and CINAHL databases. Studies evaluating SWE for the detection of PCa using histopathology as reference standard were included. RESULTS: 16 studies including 2277 patients were included for review. Nine studies evaluated SWE for the detection of PCa using systematic biopsy as a reference standard at the per-sample level, with a pooled sensitivity and specificity of 0.85 (95% CI = 0.74-0.92) and 0.85 (95% CI = 0.75-0.91), respectively. Five studies evaluated SWE for the detection of PCa using histopathology of radical prostatectomy (RP) specimens as the reference standard, with a pooled sensitivity and specificity of 0.71 (95% CI = 0.55-0.83) and 0.74 (95% CI = 0.42-0.92), respectively. Sub-group analysis revealed a higher pooled sensitivity (0.77 vs. 0.62) and specificity (0.84 vs. 0.53) for detection of csPCa compared to all PCa among studies using RP specimens as the reference standard. CONCLUSION: SWE is an attractive imaging modality for the detection of PCa.
RESUMEN
The stacked-ellipse (SE) algorithm was developed to rapidly segment the uterus on 3-D ultrasound (US) for the purpose of enabling US-guided adaptive radiotherapy (RT) for uterine cervix cancer patients. The algorithm was initialised manually on a single sagittal slice to provide a series of elliptical initialisation contours in semi-axial planes along the uterus. The elliptical initialisation contours were deformed according to US features such that they conformed to the uterine boundary. The uterus of 15 patients was scanned with 3-D US using the Clarity System (Elekta Ltd.) at multiple days during RT and manually contoured (nâ¯=â¯49 images and corresponding contours). The median (interquartile range) Dice similarity coefficient and mean surface-to-surface-distance between the SE algorithm and manual contours were 0.80 (0.03) and 3.3 (0.2) mm, respectively, which are within the ranges of reported inter-observer contouring variabilities. The SE algorithm could be implemented in adaptive RT to precisely segment the uterus on 3-D US.
Asunto(s)
Ultrasonografía Intervencional/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Útero/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Femenino , Humanos , Imagenología Tridimensional/métodos , Persona de Mediana Edad , Neoplasias del Cuello Uterino/radioterapiaRESUMEN
BACKGROUND AND PURPOSE: Daily image guidance is standard care for prostate radiotherapy. Innovations which improve the accuracy and efficiency of ultrasound guidance are needed, particularly with respect to reducing interobserver variation. This study explores automation tools for this purpose, demonstrated on the Elekta Clarity Autoscan®. The study was conducted as part of the Clarity-Pro trial (NCT02388308). MATERIALS AND METHODS: Ultrasound scan volumes were collected from 32 patients. Prostate matches were performed using two proposed workflows and the results compared with Clarity's proprietary software. Gold standard matches derived from manually localised landmarks provided a reference. The two workflows incorporated a custom 3D image registration algorithm, which was benchmarked against a third-party application (Elastix). RESULTS: Significant reductions in match errors were reported from both workflows compared to standard protocol. Median (IQR) absolute errors in the left-right, anteroposterior and craniocaudal axes were lowest for the Manually Initiated workflow: 0.7(1.0) mm, 0.7(0.9) mm, 0.6(0.9) mm compared to 1.0(1.7) mm, 0.9(1.4) mm, 0.9(1.2) mm for Clarity. Median interobserver variation was âª0.01 mm in all axes for both workflows compared to 2.2 mm, 1.7 mm, 1.5 mm for Clarity in left-right, anteroposterior and craniocaudal axes. Mean matching times was also reduced to 43 s from 152 s for Clarity. Inexperienced users of the proposed workflows attained better match precision than experienced users on Clarity. CONCLUSION: Automated image registration with effective input and verification steps should increase the efficacy of interfraction ultrasound guidance compared to the current commercially available tools.
Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Automatización , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador , UltrasonografíaRESUMEN
Radiation-sensitive polymer gels for clinical dosimetry have been intensively investigated with magnetic resonance imaging (MRI) because the transversal magnetic relaxation time is dependent on irradiation dose. MRI is expensive and not easily available in most clinics. For this reason, low-cost, quick and easy-to-use potential alternatives such as optical computed tomography (CT), x-ray CT or ultrasound attenuation CT have also been studied by others. Here, we instead evaluate the dose dependence of the elastic material property, Young's modulus and the dose response of the viscous relaxation of radiation-sensitive gels to discuss their potential for dose imaging. Three batches of a radiation-sensitive polymer gel (MAGIC gel) samples were homogeneously irradiated to doses from 0 Gy to 45.5 Gy. Young's modulus was computed from the measured stress on the sample surface and the strain applied to the sample when compressing it axially, and the viscous relaxation was determined from the stress decay under sustained compression. The viscous relaxation was found not to change significantly with dose. However, Young's modulus was dose dependent; it approximately doubled in the gels between 0 Gy and 20 Gy. By fitting a second-order polynomial to the Young's modulus-versus-dose data, 99.4% of the variance in Young's modulus was shown to be associated with the change in dose. The precision of the gel production, irradiation and Young's modulus measurement combined was found to be 4% at 2 Gy and 3% at 20 Gy. Potential sources of measurement error, such as those associated with the boundary conditions in the compression measurement, inhomogeneous polymerization, temperature (up to 1% error) and the evaporation of water from the sample (up to 1% error), were estimated and discussed. It was concluded that Young's modulus could be used for dose determination. Imaging techniques such as elastography may help to achieve this if they can provide a local measurement of Young's modulus, which may eliminate problems associated with the boundaries (e.g. variation in coefficient of friction) and inhomogeneous polymerization. Elastography combined with a calibration should also be capable of mapping dose in three dimensions.
Asunto(s)
Ácido Ascórbico/química , Ácido Ascórbico/efectos de la radiación , Sulfato de Cobre/química , Sulfato de Cobre/efectos de la radiación , Módulo de Elasticidad/efectos de la radiación , Diagnóstico por Imagen de Elasticidad/métodos , Gelatina/química , Gelatina/efectos de la radiación , Hidroquinonas/química , Hidroquinonas/efectos de la radiación , Metacrilatos/química , Metacrilatos/efectos de la radiación , Polímeros/química , Polímeros/efectos de la radiación , Radiometría/métodos , Relación Dosis-Respuesta en la Radiación , Geles/química , Geles/efectos de la radiación , Ensayo de Materiales , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern cancer treatment.
Asunto(s)
Neoplasias/radioterapia , Radioterapia Conformacional , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Aceleradores de Partículas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodosRESUMEN
Radiotherapy treatment plans using dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) reduce the dose to organs at risk (OARs) compared to coplanar VMAT, while maintaining the dose to the planning target volume (PTV). This paper seeks to validate this finding with measurements. DCR-VMAT treatment plans were produced for five patients with primary brain tumours and delivered using a commercial linear accelerator (linac). Dosimetric accuracy was assessed using point dose and radiochromic film measurements. Linac-recorded mechanical errors were assessed by extracting deviations from log files for multi-leaf collimator (MLC), couch, and gantry positions every 20 ms. Dose distributions, reconstructed from every fifth log file sample, were calculated and used to determine deviations from the treatment plans. Median (range) treatment delivery times were 125 s (123-133 s) for DCR-VMAT, compared to 78 s (64-130 s) for coplanar VMAT. Absolute point doses were 0.8% (0.6%-1.7%) higher than prediction. For coronal and sagittal films, respectively, 99.2% (96.7%-100%) and 98.1% (92.9%-99.0%) of pixels above a 20% low dose threshold reported gamma <1 for 3% and 3 mm criteria. Log file analysis showed similar gantry rotation root-mean-square error (RMSE) for VMAT and DCR-VMAT. Couch rotation RMSE for DCR-VMAT was 0.091° (0.086-0.102°). For delivered dose reconstructions, 100% of pixels above a 5% low dose threshold reported gamma <1 for 2% and 2 mm criteria in all cases. DCR-VMAT, for the primary brain tumour cases studied, can be delivered accurately using a commercial linac.
Asunto(s)
Neoplasias Encefálicas/radioterapia , Posicionamiento del Paciente/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Órganos en Riesgo , Aceleradores de Partículas , Posicionamiento del Paciente/normas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/normas , RotaciónRESUMEN
PURPOSE: Adaptive radiation therapy strategies could account for interfractional uterine motion observed in patients with cervix cancer, but the current cone beam computed tomography (CBCT)-based treatment workflow is limited by poor soft-tissue contrast. The goal of the present study was to determine if ultrasound (US) could be used to improve visualization of the uterus, either as a single modality or in combination with CBCT. METHODS AND MATERIALS: Interobserver uterine contour agreement and confidence were compared on 40 corresponding CBCT, US, and CBCT-US-fused images from 11 patients with cervix cancer. Contour agreement was measured using the Dice similarity coefficient (DSC) and mean contour-to-contour distance (MCCD). Observers rated their contour confidence on a scale from 1 to 10. Pairwise Wilcoxon signed-rank tests were used to measure differences in contour agreement and confidence. RESULTS: CBCT-US fused images had significantly better contour agreement and confidence than either individual modality (P < .05), with median (interquartile range [IQR]) values of 0.84 (0.11), 1.26 (0.23) mm, and 7 (2) for the DSC, MCCD, and observer confidence ratings, respectively. Contour agreement was similar between US and CBCT, with median (IQR) DSCs of 0.81 (0.17) and 0.82 (0.14) and MCCDs of 1.75 (1.15) mm and 1.62 (0.74) mm. Observers were significantly more confident in their US-based contours than in their CBCT-based contours (P < .05), with median (IQR) confidence ratings of 7 (2.75) versus 5 (4). CONCLUSIONS: CBCT and US are complementary and improve uterine segmentation precision when combined. Observers could localize the uterus with a similar precision on independent US and CBCT images.
Asunto(s)
Cuello del Útero/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Imagen Multimodal/métodos , Radioterapia Guiada por Imagen/métodos , Ultrasonografía , Neoplasias del Cuello Uterino/diagnóstico por imagen , Femenino , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Planificación de la Radioterapia Asistida por Computador/métodos , Estándares de Referencia , Autoimagen , Estadísticas no Paramétricas , Vejiga Urinaria/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapiaRESUMEN
Three-dimensional imaging is valuable to noninvasively assess angiogenesis given the complex 3-D architecture of vascular networks. The emergence of high frame rate (HFR) ultrasound, which can produce thousands of images per second, has inspired novel signal processing techniques and their applications in structural and functional imaging of blood vessels. Although highly sensitive vascular mapping has been demonstrated using ultrafast Doppler, the detectability of microvasculature from the background noise may be hindered by the low signal-to-noise ratio (SNR) particularly in the deeper region and without the use of contrast agents. We have recently demonstrated a coherence-based technique, acoustic subaperture imaging (ASAP), for super-contrast vascular imaging and illustrated the contrast improvement using HFR contrast-enhanced ultrasound. In this work, we provide a feasibility study for microvascular imaging using ASAP without contrast agents, and extend its capability from 2-D to volumetric vascular mapping. Using an ultrasound research system and a preclinical probe, we demonstrated the improved visibility of microvascular mapping using ASAP in comparison to ultrafast power Doppler (PD) on a mouse kidney, liver, and tumor without contrast agent injection. The SNR of ASAP images improves in average by 10 dB when compared to PD. In addition, directional velocity mappings were also demonstrated by combining ASAP with the phase information extracted from lag-1 autocorrelation. The 3-D vascular and velocity mapping of the mouse kidney, liver, and tumor were demonstrated by stacking the ASAP images acquired using 2-D ultrasound imaging and a trigger-controlled linear translation stage. The 3-D results depicted clear microvasculature morphologies and functional information in terms of flow direction and velocity in two nontumor models and a tumor model. In conclusion, we have demonstrated a new 3-D in vivo ultrasound microvascular imaging technique with significantly improved SNR over existing ultrafast Doppler.
Asunto(s)
Imagenología Tridimensional/métodos , Microvasos/diagnóstico por imagen , Neoplasias , Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Animales , Estudios de Factibilidad , Femenino , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Ratones , Ratones Desnudos , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagenRESUMEN
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.
Asunto(s)
Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Animales , Línea Celular Tumoral , Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Matriz Extracelular/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , FenotipoRESUMEN
Poroelastic theory predicts that compression-induced fluid flow through a medium reveals itself via the spatio-temporal behaviour of the strain field. Such strain behaviour has already been observed in simple poroelastic phantoms using generalised elastographic techniques (Berry et al. 2006a, 2006b). The aim of this current study was to investigate the extent to which these techniques could be applied in vivo to image and interpret the compression-induced time-dependent local strain response in soft tissue. Tissue on both arms of six patients presenting with unilateral lymphoedema was subjected to a sustained compression for up to 500 s, and the induced strain was imaged as a function of time. The strain was found to exhibit time-dependent spatially varying behaviour, which we interpret to be consistent with that of a heterogeneous poroelastic material. This occurred in both arms of all patients, although it was more easily seen in the ipsilateral (affected) arm than in the contralateral (apparently unaffected) arm in five out of the six patients. Further work would appear to be worthwhile to determine if poroelasticity imaging could be used in future both to diagnose lymphoedema and to explore the patho-physiology of the condition.
Asunto(s)
Linfedema/diagnóstico por imagen , Anciano , Brazo/diagnóstico por imagen , Brazo/patología , Brazo/fisiopatología , Enfermedad Crónica , Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Linfedema/fisiopatología , Persona de Mediana Edad , Estrés MecánicoRESUMEN
PURPOSE: Our purpose was to perform an in vivo validation of ultrasound imaging for intrafraction motion estimation using the Elekta Clarity Autoscan system during prostate radiation therapy. The study was conducted as part of the Clarity-Pro trial (NCT02388308). METHODS AND MATERIALS: Initial locations of intraprostatic fiducial markers were identified from cone beam computed tomography scans. Marker positions were translated according to Clarity intrafraction 3-dimensional prostate motion estimates. The updated locations were projected onto the 2-dimensional electronic portal imager plane. These Clarity-based estimates were compared with the actual portal-imaged 2-dimensional marker positions. Images from 16 patients encompassing 80 fractions were analyzed. To investigate the influence of intraprostatic markers and image quality on ultrasound motion estimation, 3 observers rated image quality, and the marker visibility on ultrasound images was assessed. RESULTS: The median difference between Clarity-defined intrafraction marker locations and portal-imaged marker locations was 0.6 mm (with 95% limit of agreement at 2.5 mm). Markers were identified on ultrasound in only 3 of a possible 240 instances. No linear relationship between image quality and Clarity motion estimation confidence was identified. The difference between Clarity-based motion estimates and electronic portal-imaged marker location was also independent of image quality. Clarity estimation confidence was degraded in a single fraction owing to poor probe placement. CONCLUSIONS: The accuracy of Clarity intrafraction prostate motion estimation is comparable with that of other motion-monitoring systems in radiation therapy. The effect of fiducial markers in the study was deemed negligible as they were rarely visible on ultrasound images compared with intrinsic anatomic features. Clarity motion estimation confidence was robust to variations in image quality and the number of ultrasound-imaged anatomic features; however, it was degraded as a result of poor probe placement.
Asunto(s)
Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Radioterapia de Intensidad Modulada/métodos , Ultrasonografía/métodos , Humanos , Masculino , Movimiento (Física) , Neoplasias de la Próstata/diagnóstico por imagenRESUMEN
Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the attenuation coefficient at 1 MHz, was found to be dose dependent, which is consistent with our expectations, as polymerization is known to be associated with increased absorption of ultrasound. No significant dose dependence was found for the fit parameter b, which describes the nonlinearity with frequency. This is consistent with the increased absorption being due to the introduction of new relaxation processes with characteristic frequencies similar to those of existing processes. The data presented here will help with optimizing the design of future 3D dose-imaging systems using ultrasound methods.
Asunto(s)
Geles/química , Planificación de la Radioterapia Asistida por Computador , Ultrasonido , Radiometría/métodosRESUMEN
Three-dimensional (3D) soft tissue tracking is of interest for monitoring organ motion during therapy. Our goal is to assess the tracking performance of a curvilinear 3D ultrasound probe in terms of the accuracy and precision of measured displacements. The first aim was to examine the depth dependence of the tracking performance. This is of interest because the spatial resolution varies with distance from the elevational focus and because the curvilinear geometry of the transducer causes the spatial sampling frequency to decrease with depth. Our second aim was to assess tracking performance as a function of the spatial sampling setting (low, medium or high sampling). These settings are incorporated onto 3D ultrasound machines to allow the user to control the trade-off between spatial sampling and temporal resolution. Volume images of a speckle-producing phantom were acquired before and after the probe had been moved by a known displacement (1, 2 or 8 mm). This allowed us to assess the optimum performance of the tracking algorithm, in the absence of motion. 3D speckle tracking was performed using 3D cross-correlation and sub-voxel displacements were estimated. The tracking performance was found to be best for axial displacements and poorest for elevational displacements. In general, the performance decreased with depth, although the nature of the depth dependence was complex. Under certain conditions, the tracking performance was sufficient to be useful for monitoring organ motion. For example, at the highest sampling setting, for a 2 mm displacement, good accuracy and precision (an error and standard deviation of <0.4 mm) were observed at all depths and for all directions of displacement. The trade-off between spatial sampling, temporal resolution and size of the field of view (FOV) is discussed.
Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The use of impulsive acoustic radiation force for transient strain imaging was investigated and compared with conventional elastography. A series of experiments were performed to evaluate the performances of the technique on gelatine phantoms containing inclusions and to determine a range of applications where radiation force elastography may be useful compared with static elastography. Slip boundaries and cylindrical inclusions of varying elastic modulus were placed in background materials. A focused ultrasound transducer was used to apply localised radiation force to a small volume of tissue mimic (100 mm3) for durations of 8 ms. A conventional real-time ultrasound imaging probe was used to obtain radio- frequency echo signals. The resulting strains were mapped using ultrasound correlation-based methods. The instantaneous strain immediately following cessation of the radiation force was observed at depth within homogeneous gels and within stiff inclusions. The highly localised and transient strain that is produced at depth permits the sensing of variations in tissue elastic properties that are difficult to detect with conventional elastography, due to greater independence from boundary conditions. In particular, radiation force elastograms were more homogeneous in the background and within the inclusions and displayed a superior contrast-transfer-efficiency, particularly for regions that had negative modulus contrast or that were disconnected from the background or the anterior medium by a low friction boundary.