Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 149, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570846

RESUMEN

BACKGROUND: Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS: HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-ß1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS: Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Ácido Hialurónico/farmacología , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibrosis
2.
Am J Physiol Heart Circ Physiol ; 322(5): H725-H741, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245131

RESUMEN

Previous studies have established that transmural gradients of the fast transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of altering the Ito,f gradients on transmural contractile properties using mice lacking Irx5 (Irx5-KO) or lacking Kcnd2 (KV4.2-KO) or both. Irx5-KO mice exhibited decreased global LV contractility in association with elevated Ito,f, as well as reduced cell shortening and Ca2+ transient amplitudes in cardiomyocytes isolated from the endomyocardium (ENDO) but not in cardiomyocytes from the EPI. Transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e., Kcnd2 and Kcnip2) in the ENDO, but not the EPI. By contrast, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility, comparable to KV4.2-KO mice, demonstrating a dominant role of Irx5-dependent modulation of Ito,f in the regulation of contractility. Our findings show that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.NEW & NOTEWORTHY Irx5 is a vital transcription factor that establishes the transmural heterogeneity of ventricular myocyte contractility, thereby ensuring proper contractile function in the healthy heart. Regional differences in excitation-contraction coupling in the ventricular myocardium are primarily mediated through the inverse relationship between Irx5 and the fast transient outward K+ current (Ito,f) across the ventricular wall.


Asunto(s)
Ventrículos Cardíacos , Miocardio , Potenciales de Acción/fisiología , Animales , Ventrículos Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Microvasc Res ; 136: 104165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33845105

RESUMEN

Phototherapy has been tried for treating cardiovascular diseases. In particular, ultraviolet and blue visible lights were suggested to be useful due to their nitric oxide (NO)-production ability in the skin. However, the effects of blue light on the arterial contractility are controversial. Here, we hypothesized that appropriate protocol of blue laser can induce selective vasorelaxation by activating vasodilating signaling molecules in arteries. Using organ chamber arterial mechanics, NO assay, Matrigel assay, and microarray, we showed that a 200-Hz, 300-µs, 445-nm pulsed-laser (total energy of 600 mJ; spot size 4 mm) induced selective vasorelaxation, without vasocontraction in rat mesenteric arteries. The laser stimulation increased NO production in the cord blood-endothelial progenitor cells (CB-EPCs). Both the laser-induced vasorelaxation and NO production were inhibited by a non-selective, pan-NO synthase inhibitor, L-NG-Nitro arginine methyl ester. Microarray study in CB-EPCs suggested up-regulation of cryptochrome (CRY)2 as well as NO synthase (NOS)1 and NOSTRIN (NOS trafficking) by the laser. In conclusion, this study suggests that the 445-nm blue puled-laser can induce vasorelaxation possibly via the CRY photoreceptors and NOSs activation. The blue laser-therapy would be useful for treating systemic hypertension as well as improving local blood flow depending on the area of irradiation.


Asunto(s)
Células Progenitoras Endoteliales/efectos de la radiación , Rayos Láser , Terapia por Luz de Baja Intensidad/instrumentación , Arterias Mesentéricas/efectos de la radiación , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Vasodilatación/efectos de la radiación , Animales , Células Cultivadas , Células Progenitoras Endoteliales/enzimología , Activación Enzimática , Sangre Fetal/citología , Regulación de la Expresión Génica , Humanos , Masculino , Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa/genética , Ratas Sprague-Dawley , Transducción de Señal
4.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535594

RESUMEN

Human bone marrow-derived mesenchymal stem cells (BM-MSCs), represented as a population of adult stem cells, have long been considered as one of the most promising sources for cell-based cardiac regenerative therapy. However, their clinical use has been significantly hampered by low survival and poor retention following administration into failing hearts. Here, to improve the therapeutic effectiveness of BM-MSCs, we examined a novel therapeutic platform named in situ preconditioning in a rat myocardial infarction (MI) model. In situ preconditioning was induced by a combinatory treatment of BM-MSCs with genetically engineered hepatocyte growth factor-expressing MSCs (HGF-eMSCs) and heart-derived extracellular matrix (hdECM) hydrogel. Subsequently, our results demonstrated that in situ preconditioning with cell mixture substantially improved the survival/retention of BM-MSCs in the MI-induced rat hearts. Enhanced retention of BM-MSCs ultimately led to a significant cardiac function improvement, which was derived from the protection of myocardium and enhancement of vessel formation in the MI hearts. The results provide compelling evidence that in situ preconditioning devised to improve the therapeutic potential of BM-MSCs can be an effective strategy to achieve cardiac repair of MI hearts.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/terapia , Adulto , Animales , Procedimientos Quirúrgicos Cardíacos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Vasos Coronarios , Ecocardiografía , Matriz Extracelular/metabolismo , Fibrosis , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Neovascularización Patológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Regeneración , Células Madre/metabolismo , Ingeniería de Tejidos , Resultado del Tratamiento , Adulto Joven
5.
Nutr Cancer ; 71(5): 861-869, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30661409

RESUMEN

Quercetin, an antioxidant flavonoid, has been known that it can induce the cell cycle arrest and apoptosis of hepatocellular carcinoma (HCC) cells by the stabilization or induction of p53. Here, we found that quercetin reduced the proliferation of HepG2 cells significantly, but not Huh7 cells. Interestingly, quercetin down-regulated the intracellular ROS level in HepG2 cells, but not Huh7 cells. Functional study using siRNA showed that the proliferation of HepG2 cells was still regulated by quercetin in the absence of p53. Furthermore, we confirmed the effect of quercetin on HepG2 cells by H2O2 supplementation. This study demonstrates that the antiproliferative effect of quercetin on HCC cells can be mediated by reducing intracellular ROS, which is independent of p53 expression.


Asunto(s)
Antioxidantes/farmacología , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Células Hep G2 , Humanos
6.
Clin Sci (Lond) ; 132(6): 641-654, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487197

RESUMEN

Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca2+-ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo, and HF following experimental myocardial infarction (MI) in vivoMethods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca2+-regulatory genes, and induced hypertrophy without significant differences in Ca2+ transients or diastolic Ca2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF.Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF.


Asunto(s)
Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Señalización del Calcio , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Preparación de Corazón Aislado , Ratones Transgénicos , Contracción Miocárdica , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Regulación hacia Arriba , Función Ventricular Izquierda , Presión Ventricular
7.
Circulation ; 128(17): 1897-909, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23995537

RESUMEN

BACKGROUND: Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. METHOD AND RESULTS: Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. CONCLUSIONS: We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.


Asunto(s)
Trasplante de Células/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , ARN Mensajero/aislamiento & purificación , Potenciales de Acción/fisiología , Animales , Biomarcadores , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Citometría de Flujo/métodos , Humanos , Ratones , Miocitos Cardíacos/fisiología , Cadenas Pesadas de Miosina/genética , Nanotecnología , Conformación de Ácido Nucleico , Células Madre Pluripotentes/fisiología , Sondas ARN/química , Sondas ARN/aislamiento & purificación , ARN Mensajero/química , Troponina I/genética , Troponina T/genética
8.
Lab Chip ; 24(6): 1782-1793, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38358122

RESUMEN

Non-invasive droplet manipulation with no physical damage to the sample is important for the practical value of manipulation tools in multidisciplinary applications from biochemical analysis and diagnostics to cell engineering. It is a challenge to achieve this for most existing photothermal, electric stimuli, and magnetic field-based technologies. Herein, we present a droplet handling toolbox, the ferrofluid transporter, for non-invasive droplet manipulation in an oil environment. It involves the transport of droplets with high robustness and efficiency owing to low interfacial friction. This capability caters to various scenarios including droplets with varying components and solid cargo. Moreover, we fabricated a droplet array by transporter positioning and achieved droplet gating and sorting for complex manipulation in the droplet array. Benefiting from the ease of scale-up and high biocompatibility, the transporter-based droplet array can serve as a digital microfluidic platform for on-chip droplet-based bioanalysis, cell spheroid culture, and downstream drug screening tests.


Asunto(s)
Coloides , Microfluídica , Ingeniería Celular , Técnicas de Cultivo de Célula
9.
Cardiovasc Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850165

RESUMEN

AIM: Given the extremely limited regeneration potential of the heart, one of the most effective strategies to reduce the prevalence and mortality of coronary artery disease is prevention. Short-chain fatty acids (SCFAs), which are by-products of beneficial probiotics, have been reported to possess cardioprotective effects. Despite their beneficial roles, delivering SCFAs and maintaining their effective concentration in plasma present major challenges. Therefore, in the present study, we aimed to devise a strategy to prevent coronary heart disease effectively by using engineered probiotics to continuously release SCFAs in vivo. METHODS AND RESULTS: We engineered a novel probiotic cocktail, EcN_TL, from the commercially available Escherichia coli Nissle 1917 strain to continuously secrete SCFAs by introducing the propionate and butyrate biosynthetic pathways. Oral administration of EcN_TL enhanced and maintained an effective concentration of SCFAs in the plasma. As a preventative strategy, we observed that daily intake of EcN_TL for 14 days prior to ischemia-reperfusion injury significantly reduced myocardial injury and improved cardiac performance compared to EcN administration. We uncovered that EcN_TL's protective mechanisms included reducing neutrophil infiltration into the infarct site and promoting the polarization of wound-healing macrophages. We further revealed that SCFAs at plasma concentration protected cardiomyocytes from inflammation by suppressing the NF-κB activation pathway. CONCLUSIONS: These data provide strong evidence to support the use of SCFA-secreting probiotics to prevent coronary heart disease. Since SCFAs also play a key role in other metabolic diseases, EcN_TL can potentially be used to treat a variety of other diseases.

10.
Nat Commun ; 15(1): 2564, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519491

RESUMEN

Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular , Miocitos Cardíacos , Ingeniería de Tejidos/métodos
11.
Circ Res ; 108(9): 1053-62, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21372285

RESUMEN

RATIONALE: Cell cycle progression in vascular smooth muscle cells (VSMCs) is a therapeutic target for restenosis. OBJECTIVE: Having discovered that calmodulin (CaM)-dependent cyclin E/CDK2 activity underlies Ca(2+)-sensitive G(1)-to-S phase transitions in VSMCs, we sought to explore the physiological importance of the CaM-cyclin E interaction. METHODS AND RESULTS: A peptide based on the CaM binding sequence (CBS) of cyclin E was designed to interfere with CaM-cyclin E binding. Compared with control peptides, CBS blocked activating Thr160 phosphorylation of CDK2, decreased basal cyclin E/CDK2 activity, and eliminated Ca(2+)-sensitive cyclin E/CDK2 activity in nuclear extracts from mouse VSMCs. Nucleofection with CBS, or treatment with CBS conjugated to the HIV-1 TAT protein transduction domain to improve bioavailability, inhibited G(1)-to-S cell cycle progression in a dose-dependent manner. These effects were not observed with control peptides. TAT-CBS inhibited (3)H-thymidine incorporation in primary human aortic SMCs (HA-SMCs) in vitro, manifested greater transduction into HA-SMCs compared with endothelial cells in vitro, and limited decreased SM22α expression, neointima formation, and medial thickening without affecting collagen deposition or reendothelialization in a mouse model of carotid artery injury in vivo. The antiproliferative effects of CBS remained evident in mouse embryonic fibroblasts derived from wild-type mice but not cyclin E1/E2 double knockout mice. CONCLUSIONS: A synthetic peptide designed to disrupt CaM-cyclin E binding inhibits Ca(2+)/CaM-dependent CDK2 activity, cell cycle progression, and proliferation in VSMCs and limits arterial remodeling following injury. Importantly, this effect appears to be cyclin E-dependent and may form the basis of a potentially novel therapeutic approach for restenosis.


Asunto(s)
Calmodulina/metabolismo , Ciclina E/metabolismo , Músculo Liso Vascular , Neointima , Péptidos/farmacología , Animales , Aorta/citología , Sitios de Unión/fisiología , Proteínas Sanguíneas/farmacología , Calmodulina/química , Reestenosis Coronaria/metabolismo , Reestenosis Coronaria/patología , Reestenosis Coronaria/prevención & control , Ciclina E/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Neointima/tratamiento farmacológico , Neointima/metabolismo , Neointima/patología , Péptidos/síntesis química , Péptidos/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Quinasas/metabolismo , Fase S/efectos de los fármacos , Fase S/fisiología
12.
Nat Commun ; 14(1): 759, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765072

RESUMEN

Electroconductive hydrogels have been applied in implantable bioelectronics, tissue engineering platforms, soft actuators, and other emerging technologies. However, achieving high conductivity and mechanical robustness remains challenging. Here we report an approach to fabricating electroconductive hydrogels based on the hybrid assembly of polymeric nanofiber networks. In these hydrogels, conducting polymers self-organize into highly connected three dimensional nanostructures with an ultralow threshold (~1 wt%) for electrical percolation, assisted by templating effects from aramid nanofibers, to achieve high electronic conductivity and structural robustness without sacrificing porosity or water content. We show that a hydrogel composed of polypyrrole, aramid nanofibers and polyvinyl alcohol achieves conductivity of ~80 S cm-1, mechanical strength of ~9.4 MPa and stretchability of ~36%. We show that patterned conductive nanofiber hydrogels can be used as electrodes and interconnects with favorable electrochemical impedance and charge injection capacity for electrophysiological applications. In addition, we demonstrate that cardiomyocytes cultured on soft and conductive nanofiber hydrogel substrates exhibit spontaneous and synchronous beating, suggesting opportunities for the development of advanced implantable devices and tissue engineering technologies.

13.
Korean Circ J ; 53(6): 367-386, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37271744

RESUMEN

Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.

14.
Korean Circ J ; 53(8): 499-518, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37525495

RESUMEN

Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.

15.
Exp Mol Med ; 55(10): 2248-2259, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37779148

RESUMEN

Despite recent progress in medical and endovascular therapy, the prognosis for patients with critical limb ischemia (CLI) remains poor. In response, various stem cells and growth factors have been assessed for use in therapeutic neovascularization and limb salvage in CLI patients. However, the clinical outcomes of cell-based therapeutic angiogenesis have not provided the promised benefits, reinforcing the need for novel cell-based therapeutic angiogenic strategies to cure untreatable CLI. In the present study, we investigated genetically engineered mesenchymal stem cells (MSCs) derived from human bone marrow that continuously secrete stromal-derived factor-1α (SDF1α-eMSCs) and demonstrated that intramuscular injection of SDF1α-eMSCs can provide long-term paracrine effects in limb ischemia and effectively contribute to vascular regeneration as well as skeletal muscle repair through increased phosphorylation of ERK and Akt within the SDF1α/CXCR4 axis. These results provide compelling evidence that genetically engineered MSCs with SDF-1α can be an effective strategy for successful limb salvage in limb ischemia.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Isquemia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica
16.
ACS Appl Mater Interfaces ; 15(44): 50693-50707, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37812574

RESUMEN

The patch-based delivery system has been a promising therapeutic approach for treating various vascular diseases. However, conventional methods face several challenges, including labor-intensive and time-consuming processes associated with patch fabrication or factor incorporation, inadequate physical properties, and uncontrolled release of factors. These limitations restrict the potential applications in clinical settings. To overcome these issues, we propose a novel core-shell-shaped droplet patch system called an angiogenic patch (AP). Our system offers several distinct advantages over conventional patches. It enables a rapid and straightforward fabrication process utilizing only two biodegradable ingredients [alginate and ε-poly(l-lysine)], ensuring minimal toxicity. Moreover, the AP exhibits excellent physical integrity to match and withstand physiological mechanics and allows for customizable patch dimensions tailored to individual patients' pathological conditions. Notably, the AP enables facile loading of angiogenic cytokines during patch fabrication, allowing sustained release at a controlled rate through tunable network cross-linking. Subsequently, the AP, delivering a precisely formulated cocktail of angiogenic cytokines (VEGF, bFGF, EGF, and IGF), demonstrated significant effects on endothelial cell functions (migration and tubule formation) and survival under pathological conditions simulating ischemic injury. Likewise, in in vivo experiments using a mouse model of hindlimb ischemia, the AP encapsulating the angiogenic cocktail effectively restored blood flow following an ischemic insult, promoting muscle regeneration and preventing limb loss. With its simplicity and rapid processability, user-friendly applicability, physical tunability, and the ability to efficiently load and control the delivery of angiogenic factors, the AP holds great promise as a therapeutic means for treating patients with ischemic diseases.


Asunto(s)
Isquemia , Neovascularización Fisiológica , Animales , Humanos , Isquemia/tratamiento farmacológico , Isquemia/patología , Sistemas de Liberación de Medicamentos , Fenómenos Fisiológicos Cardiovasculares , Citocinas
17.
Cells ; 11(3)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159256

RESUMEN

The MTOR signal is known to be activated in various cancer cells including hepatocellular carcinoma (HCC) cells. Rapamycin, a specific inhibitor of MTOR, has been widely used as an immunosuppressant in organ transplant patients, and its clinical application has been recently expanded to cancer therapy. In this study, the anti-proliferative effect of rapamycin was investigated in four different HCC cell lines. Rapamycin effectively inhibited the proliferation of Huh7 or Hep3B, but not that of HepG2 or SNU3160 cells. Interestingly, rapamycin increased Prospero-related homeobox 1 (PROX1) expression at the protein level, but did not affect its transcript in Huh7 as well as Hep3B cells. Moreover, immunoprecipitation assays showed that PROX1 ubiquitination was downregulated by rapamycin. Furthermore, PROX1 over-expression or siRNA knock-down in Huh7 and Hep3B cells reduced or increased proliferation, respectively. The effect of PROX1 over-expression on the sensitivity to rapamycin was not synergistic, but the effect of MTOR inhibition on cell proliferation was diminished by PROX1 siRNA. Finally, Huh7 cells were inoculated into the flanks of nude mice and rapamycin was injected daily for 14 days. The xenograft volume was decreased and PROX1 expression was increased by rapamycin. These results indicate that PROX1 plays a key role in the anti-proliferative effect of rapamycin and suggest that the increased PROX1 by MTOR inhibition can be used as a useful marker for predicting whether HCC cells can be affected by rapamycin.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Homeodominio , Neoplasias Hepáticas , Sirolimus , Proteínas Supresoras de Tumor , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Desnudos , ARN Interferente Pequeño/uso terapéutico , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo
18.
Exp Mol Med ; 54(1): 23-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34997212

RESUMEN

Ischemia-reperfusion (I/R) injury accelerates the cardiomyocytes (CMs) death by oxidative stress, and thereby deteriorates cardiac function. There has been a paradigm shift in the therapeutic perspective more towards the prevention or amelioration of damage caused by reperfusion. Cardiac microvascular endothelial cells (CMECs) are more vulnerable to reperfusion injury and play the crucial roles more than CMs in the pathological process of early I/R injury. In this study, we investigate that CU06-1004, as a vascular leakage blocker, can improve cardiac function by inhibiting CMEC's hyperpermeability and subsequently reducing the neutrophil's plugging and infiltration in infarcted hearts. CU06-1004 was delivered intravenously 5 min before reperfusion and the rats were randomly divided into three groups: (1) vehicle, (2) low-CU06-1004 (1 mg/kg, twice at 24 h intervals), and (3) high-CU06-1004 (5 mg/kg, once before reperfusion). CU06-1004 treatment reduced necrotic size and cardiac edema by enhancing vascular integrity, as demonstrated by the presence of intact junction proteins on CMECs and surrounding pericytes in early I/R injury. It also decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) on CMECs, resulting in reduced infiltration of neutrophils and macrophages. Echocardiography showed that the CU06-1004 treatment significantly improved cardiac function compared with the vehicle group. Interestingly, single high-dose treatment with CU06-1004 provided a greater functional improvement than repetitive low-dose treatment until 8 weeks post I/R. These findings demonstrate that CU06-1004 enhances vascular integrity and improves cardiac function by preventing lethal myocardial I/R injury. It can provide a promising therapeutic option, as potential adjunctive therapy to current reperfusion strategies.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Edema/metabolismo , Células Endoteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Saponinas , Remodelación Ventricular
19.
Biofabrication ; 15(1)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36041427

RESUMEN

The heart, contrary to its small size, vigorously pumps oxygen and nutrients to our entire body indeterminably; and thus, its dysfunction could be devastating. Until now, there ave been several major obstacles to applying a cardiac patch for the treatment for myocardial infarction, including poor integration and low engraftment rates, due to the highly-curved surface of the heart and its dynamic nature. Here, we demonstrate a novel way for a comprehensive cardiac repair achieved by the sutureless transplantation of a highly integrablein vivopriming bone marrow mesenchymal stem cell (BMSC) sheet based on the utilization of a highly aligned thermoresponsive nanofiber membrane. Moreover, we developed a BMSC sheet specialized for vascular regeneration through 'in-vivopriming' using human umbilical vein endothelial cells. A prolonged secretion of multiple angiogenic cytokines, such as vascular endothelial growth factor, angiopoietin-1, insulin-like growth factor-1, which was observedin vitrofrom the specialized BMSC sheet seemed to lead a significant improvement in the cardiac function, including intrinsic contractibility and remodeling. In this study, we provide strong evidence thatin vivopriming of a human BMSC sheet develops the therapeutic potential for cardiac repair.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Angiopoyetina 1/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Endoteliales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Citocinas/metabolismo , Oxígeno/metabolismo
20.
Sci Adv ; 8(50): eabn5768, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516259

RESUMEN

Direct cardiac reprogramming has emerged as a promising therapeutic approach for cardiac regeneration. Full chemical reprogramming with small molecules to generate cardiomyocytes may be more amenable than genetic reprogramming for clinical applications as it avoids safety concerns associated with genetic manipulations. However, challenges remain regarding low conversion efficiency and incomplete cardiomyocyte maturation. Furthermore, the therapeutic potential of chemically induced cardiomyocytes (CiCMs) has not been investigated. Here, we report that a three-dimensional microenvironment reconstituted with decellularized heart extracellular matrix can enhance chemical reprogramming and cardiac maturation of fibroblasts to cardiomyocytes. The resultant CiCMs exhibit elevated cardiac marker expression, sarcomeric organization, and improved electrophysiological features and drug responses. We investigated the therapeutic potential of CiCMs reprogrammed in three-dimensional heart extracellular matrix in a rat model of myocardial infarction. Our platform can facilitate the use of CiCMs for regenerative medicine, disease modeling, and drug screening.


Asunto(s)
Miocitos Cardíacos , Regeneración , Ratas , Animales , Miocitos Cardíacos/metabolismo , Medicina Regenerativa/métodos , Matriz Extracelular , Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA