Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Biol ; 463(1): 1-10, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360630

RESUMEN

Implantation represents a critical step for embryonic development and pregnancy. Its success depends on the complex interplay between a receptive endometrium and a competent embryo. Implantation-related events remain hardly accessible, making implantation a true "black box" in developmental biology. Improved in vitro models are becoming useful experimental tools, as they are considerably more accessible than in vivo models, easier to manipulate, and permit the use of human cells or tissues, thus increasing the translational value of the studies. In this Review, we briefly summarize the relevant cell types and structures involved into the process of implantation, in order to outline which compartments are indispensable for creating the perfect in vitro model. We also critically address advantages and limitations of available models and assess their application potential. Moreover, we examine the chances and challenges brought by the latest approaches to recapitulate the endometrial compartment, as well as by peri-implantational embryoids.


Asunto(s)
Implantación del Embrión/fisiología , Endometrio/metabolismo , Animales , Biología Evolutiva/métodos , Embrión de Mamíferos , Desarrollo Embrionario , Endometrio/fisiología , Femenino , Humanos , Modelos Biológicos , Embarazo
2.
PLoS Genet ; 14(1): e1007171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29320510

RESUMEN

Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure.


Asunto(s)
Tejido Adiposo/metabolismo , Insuficiencia Cardíaca/etiología , Hipertensión/complicaciones , Lipasa/fisiología , Metabolismo de los Lípidos/genética , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Animales , Estudios de Casos y Controles , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Lipasa/genética , Lipasa/metabolismo , Masculino , Metaboloma/genética , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular
3.
J Biol Chem ; 290(39): 23603-15, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26260790

RESUMEN

Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy. Mice deficient for adipose triglyceride lipase (Atgl) in AT (atATGL-KO) were challenged with chronic treadmill running. Exercise-induced AT lipolytic activity was significantly reduced in atATGL-KO mice accompanied by the absence of a plasma fatty acid (FA) increase. These processes were directly associated with a prominent attenuation of myocardial FA uptake in atATGL-KO and a significant reduction of the cardiac hypertrophic response to exercise. FA serum profiling revealed palmitoleic acid (C16:1n7) as a new molecular co-mediator of exercise-induced cardiac hypertrophy by inducing nonproliferative cardiomyocyte growth. In parallel, serum FA analysis and echocardiography were performed in 25 endurance athletes. In consonance, the serum C16:1n7 palmitoleate level exhibited a significantly positive correlation with diastolic interventricular septum thickness in those athletes. No correlation existed between linoleic acid (18:2n6) and diastolic interventricular septum thickness. Collectively, our data provide the first evidence that adipose tissue lipolysis directly promotes the development of exercise-induced cardiac hypertrophy involving the lipokine C16:1n7 palmitoleate as a molecular co-mediator. The identification of a lipokine involved in physiological cardiac growth may help to develop future lipid-based therapies for pathological LVH or heart failure.


Asunto(s)
Tejido Adiposo/metabolismo , Cardiomegalia/etiología , Ácidos Grasos Monoinsaturados/metabolismo , Lipólisis , Condicionamiento Físico Animal , Animales , Cardiomegalia/metabolismo , Línea Celular , Ratones , Ratones Noqueados
5.
J Biomed Semantics ; 14(1): 13, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658458

RESUMEN

Current animal protection laws require replacement of animal experiments with alternative methods, whenever such methods are suitable to reach the intended scientific objective. However, searching for alternative methods in the scientific literature is a time-consuming task that requires careful screening of an enormously large number of experimental biomedical publications. The identification of potentially relevant methods, e.g. organ or cell culture models, or computer simulations, can be supported with text mining tools specifically built for this purpose. Such tools are trained (or fine tuned) on relevant data sets labeled by human experts. We developed the GoldHamster corpus, composed of 1,600 PubMed (Medline) articles (titles and abstracts), in which we manually identified the used experimental model according to a set of eight labels, namely: "in vivo", "organs", "primary cells", "immortal cell lines", "invertebrates", "humans", "in silico" and "other" (models). We recruited 13 annotators with expertise in the biomedical domain and assigned each article to two individuals. Four additional rounds of annotation aimed at improving the quality of the annotations with disagreements in the first round. Furthermore, we conducted various machine learning experiments based on supervised learning to evaluate the corpus for our classification task. We obtained more than 7,000 document-level annotations for the above labels. After the first round of annotation, the inter-annotator agreement (kappa coefficient) varied among labels, and ranged from 0.42 (for "others") to 0.82 (for "invertebrates"), with an overall score of 0.62. All disagreements were resolved in the subsequent rounds of annotation. The best-performing machine learning experiment used the PubMedBERT pre-trained model with fine-tuning to our corpus, which gained an overall f-score of 0.83. We obtained a corpus with high agreement for all labels, and our evaluation demonstrated that our corpus is suitable for training reliable predictive models for automatic classification of biomedical literature according to the used experimental models. Our SMAFIRA - "Smart feature-based interactive" - search tool ( https://smafira.bf3r.de ) will employ this classifier for supporting the retrieval of alternative methods to animal experiments. The corpus is available for download ( https://doi.org/10.5281/zenodo.7152295 ), as well as the source code ( https://github.com/mariananeves/goldhamster ) and the model ( https://huggingface.co/SMAFIRA/goldhamster ).


Asunto(s)
Experimentación Animal , Animales , Humanos , Minería de Datos , MEDLINE , Aprendizaje Automático , Modelos Teóricos
6.
Hypertension ; 71(4): 599-608, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437893

RESUMEN

Mineralocorticoid receptor antagonists (MRAs) reduce morbidity and mortality in chronic heart failure. Novel nonsteroidal MRAs are currently developed and need to be pharmacologically characterized in comparison to classical steroidal MRAs. A mouse model of cardiac fibrosis induced by short-term isoproterenol injection was used to compare the nonsteroidal MRA finerenone and the steroidal MRA eplerenone in equi-efficient systemic MR blocking dosages. Molecular mechanisms were studied in MR-expressing H9C2/MR+ cardiomyocytes and in MR transcriptional cofactor binding assays. Both MRAs significantly inhibited an isoproterenol-mediated increase of left ventricular mass. Isoproterenol-induced cardiac fibrosis and macrophage invasion were potently blocked by finerenone, whereas eplerenone had no significant effect. Speckle tracking echocardiography revealed a significant improvement of global longitudinal peak strain by finerenone, an effect less prominent with eplerenone. Antifibrotic actions of finerenone were accompanied by a significant inhibition of profibrotic cardiac TNX (tenascin-X) expression, a regulation absent with eplerenone. Finally, we show a higher potency/efficacy and inverse agonism of finerenone versus eplerenone in MR transcriptional cofactor binding assays indicating differential MR cofactor modulation by steroidal and nonsteroidal MRAs. This study demonstrates that the nonsteroidal MRA finerenone potently prevents cardiac fibrosis and improves strain parameters in mice. Cardiac antifibrotic actions of finerenone may result from the inhibition of profibrotic TNX gene expression mediated by differential MR cofactor binding. Selective MR cofactor modulation provides a molecular basis for distinct (pre)-clinical actions of nonsteroidal and steroidal MRAs.


Asunto(s)
Eplerenona/farmacología , Insuficiencia Cardíaca , Miocitos Cardíacos , Naftiridinas/farmacología , Tenascina , Animales , Disponibilidad Biológica , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Ratones , Antagonistas de Receptores de Mineralocorticoides/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tenascina/genética , Tenascina/metabolismo
7.
Sci Rep ; 7: 43269, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28233809

RESUMEN

Estrogen receptor alpha (ERα) is a major regulator of metabolic processes in obesity. In this study we aimed to define the relevance of adipose tissue ERα during high-fat diet (HFD)-induced obesity using female aP2-Cre-/+/ERαfl/fl mice (atERαKO). HFD did not affect body weight or glucose metabolism in atERαKO- compared to control mice. Surprisingly, HFD feeding markedly increased mortality in atERαKO mice associated with a destructive bacterial infection of the uterus driven by commensal microbes, an alteration likely explaining the absence of a metabolic phenotype in HFD-fed atERαKO mice. In order to identify a mechanism of the exaggerated uterine infection in HFD-fed atERαKO mice, a marked reduction of uterine M2-macrophages was detected, a cell type relevant for anti-microbial defence. In parallel, atERαKO mice exhibited elevated circulating estradiol (E2) acting on E2-responsive tissue/cells such as macrophages. Accompanying cell culture experiments showed that despite E2 co-administration stearic acid (C18:0), a fatty acid elevated in plasma from HFD-fed atERαKO mice, blocks M2-polarization, a process known to be enhanced by E2. In this study we demonstrate an unexpected phenotype in HFD-fed atERαKO involving severe uterine bacterial infections likely resulting from a previously unknown negative interference between dietary FAs and ERα-signaling during anti-microbial defence.


Asunto(s)
Tejido Adiposo/metabolismo , Infecciones Bacterianas/etiología , Dieta Alta en Grasa , Receptor alfa de Estrógeno/metabolismo , Cervicitis Uterina/microbiología , Animales , Células Cultivadas , Receptor alfa de Estrógeno/genética , Femenino , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Fagocitosis , Transducción de Señal , Cervicitis Uterina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA