RESUMEN
Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32â mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.
RESUMEN
Atomic force microscopy-infrared spectroscopy (AFM-IR) and optical photothermal infrared spectroscopy (O-PTIR), which feature spectroscopic imaging spatial resolution down to â¼ 50 nm and â¼ 500 nm, respectively, were employed to characterize the nano- to microscale chemical compositional changes in bone. Since these changes are known to be age dependent, fluorescently labelled bone samples were employed. The average matrix/mineral ratio values decrease as the bone tissue matures as measured by both AFM-IR and O-PTIR, which agrees with previously published FTIR and Raman spectroscopy results. IR ratio maps obtained by AFM-IR reveal variation in matrix/mineral ratio-generating micron-scale bands running parallel to the bone surface as well as smaller domains within these bands ranging from â¼ 50 to 700 nm in size, which is consistent with the previously published length scale of nanomechanical heterogeneity. The matrix/mineral changes do not exhibit a smooth gradient with tissue age. Rather, the matrix/mineral transition occurs sharply within the length scale of 100-200 nm. O-PTIR also reveals matrix/mineral band domains running parallel to the bone surface, resulting in waves of matrix/mineral ratios progressing from the youngest to most mature tissue. Both AFM-IR and O-PTIR show a greater variation in matrix/mineral ratio value for younger tissue as compared to older tissue. Together, this data confirms O-PTIR and AFM-IR as techniques that visualize bulk spectroscopic data consistent with higher-order imaging techniques such as Raman and FTIR, while revealing novel insight into how mineralization patterns vary as bone tissue ages.
Asunto(s)
Huesos , Espectrometría Raman , Microscopía de Fuerza Atómica/métodos , Minerales , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodosRESUMEN
The phase (solid, semisolid, or liquid) of atmospheric aerosols is central to their ability to take up water or undergo heterogeneous reactions. In recent years, the unexpected prevalence of viscous organic particles has been shown through field measurements and global atmospheric modeling. The aerosol phase has been predicted using glass transition temperatures (Tg), which were estimated based on molecular weight, oxygen:carbon ratio, and chemical formulae of organic species present in atmospheric particles via studies of bulk materials. However, at the most important sizes for cloud nucleation (â¼50-500 nm), particles are complex mixtures of numerous organic species, inorganic salts, and water with substantial particle-to-particle variability. To date, direct measurements of Tg have not been feasible for individual atmospheric particles. Herein, nanothermal analysis (NanoTA), which uses a resistively heated atomic force microscopy (AFM) probe, is combined with AFM photothermal infrared (AFM-PTIR) spectroscopy to determine the Tg and composition of individual particles down to 76 nm in diameter at ambient temperature and pressure. Laboratory-generated proxies for organic aerosol (sucrose, ouabain, raffinose, and maltoheptaose) had similar Tg values to bulk Tg values measured with differential scanning calorimetry (DSC) and the Tg predictions used in atmospheric models. Laboratory-generated phase-separated particles and ambient particles were analyzed with NanoTA + AFM-PTIR showing intraparticle variation in composition and Tg. These results demonstrate the potential for NanoTA + AFM-PTIR to increase our understanding of viscosity within submicrometer atmospheric particles with complex phases, morphologies, and compositions, which will enable improved modeling of aerosol impacts on clouds and climate.
Asunto(s)
Agua , Aerosoles/química , Microscopía de Fuerza Atómica/métodos , Tamaño de la Partícula , Temperatura , Temperatura de TransiciónRESUMEN
Folate receptor (FR) overexpression in a wide range of solid tumors provides an opportunity to develop novel, targeted cancer therapeutics. In this study, we investigated whether prebinding the chemotherapeutic methotrexate (MTX) to folate-binding protein (FBP), the soluble form of FR, would enable the protein to serve as a targeted therapeutic vector, enhancing uptake into tumor cells and improving therapeutic efficacy. In an in vivo study, using an FR-overexpressing KB xenograft model in SCID mice, modest improvement in inhibiting tumor growth was observed for the MTX/FBP mixtures as compared to saline control and free MTX. Surprisingly, FBP alone inhibited tumor growth compared to saline control, free MTX, and FBP/MTX. In order to better understand this effect, we investigated the cytotoxicity of micromolar concentrations of FBP in vitro using the KB, HeLa, and A549 cancer cell lines. Our results revealed concentration-dependent apoptosis (24 h; 10-50 µM) in all three cell lines accompanied by a time- and concentration-dependent reduction (6, 12, and 24 h; 10-50 µM) in metabolic activity and compromised cell plasma membrane integrity. This study demonstrates an apoptosis pathway for cytotoxicity of FBP, an endogenous serum protein, in cancer cell lines with widely varying levels of FR expression. Furthermore, in vivo tumor growth suppression for xenograft KB tumors in SCID mice was observed. These studies suggest novel strategies for the elimination of cancer cells employing endogenous, serum transport proteins.
Asunto(s)
Proteínas Portadoras , Ácido Fólico , Animales , Proteínas Portadoras/metabolismo , Receptores de Folato Anclados a GPI , Ácido Fólico/metabolismo , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Ratones , Ratones SCIDRESUMEN
The COVID-19 pandemic has highlighted the need for diversity in the market and alternative materials for personal protective equipment (PPE). Paper has high coatability for tunable barrier performance, and an agile production process, making it a potential substitute for polyolefin-derived PPE materials. Bleached and newsprint papers were laminated with polyethylene (PE) coatings of different thicknesses, and characterised for their potential use as medical gowns for healthcare workers and COVID-19 patients. Thicker PE lamination improved coating homogeneity and water vapour resistance. 49 GSM bleached paper with 16 GSM PE coating showed high tensile and seam strength, and low water vapour transmission rate (WVTR). Phi-X174 bacteriophage testing revealed that paper laminated with 15 GSM coating hinders virus penetration. This research demonstrates that PE laminated paper is a promising material for low cost viral protective gowns.
RESUMEN
Solid state chemical analysis of pharmaceutical inhalation aerosols at the individual particle level has been an analytical challenge. These particles can range from a few nanometers to micrometers and are a complex mixture of drugs and excipients. Conventional analytical techniques cannot resolve the distribution of excipients and drugs at the submicrometer scale. Understanding the nanochemical composition of individual particles can be critical for pharmaceutical scientists to evaluate drug and excipient stability as well as the drug-drug or drug-excipient interactions that affect the aerosol performance of powders. Herein, we show the novel application of a combination of optical photothermal infrared (O-PTIR) spectroscopy and atomic force microscopy infrared (AFM-IR) spectroscopy to probe nanochemical domains of powders containing the inhaled corticosteroid fluticasone propionate and long-acting ß2-agonist salmeterol xinafoate, which are widely used to treat asthma and chronic obstructive pulmonary disease. Three types of powder formulation were analyzed, including the commercial product Seretide, which is a physical mixture of the drugs with crystalline lactose, and two spray-dried powders containing the drugs along with either amorphous or crystalline lactose. We obtained spatially resolved O-PTIR and AFM-IR spectra confirming the presence of peaks related to fluticasone propionate at 1743, 1661, and 1700 cm-1, salmeterol xinafoate at 1580 cm-1, and lactose at 1030 and 1160 cm-1. The location of the drugs and lactose among the particles varied significantly, depending on the formulation type. For the first time, it was possible to map the drug distribution in individual aerosol particles. This is significant as such information has been lacking, and it will open an exciting research direction on how drug distribution affects the aerosol performance of powders and the consistency of dose uniformity. Further, these advanced spectroscopic techniques can be applied to study a wide range of pharmaceutical formulations.
Asunto(s)
Corticoesteroides/análisis , Fluticasona/análisis , Nanopartículas/química , Xinafoato de Salmeterol/análisis , Aerosoles/análisis , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Polvos/análisis , Espectrofotometría Infrarroja , Propiedades de SuperficieRESUMEN
The organization of protein molecules into higher-order nanoscale architectures is ubiquitous in Nature and represents an important goal in synthetic biology. Furthermore, the stabilization of enzyme activity has many practical applications in biotechnology and medicine. Here we describe the symmetry-directed design of an extremely stable, enzymatically active, hollow protein cage of Mr ≈ 2.1 MDa with dimensions similar to those of a small icosahedral virus. The cage was constructed based on icosahedral symmetry by genetically fusing a trimeric protein (TriEst) to a small pentameric de novo-designed coiled coil domain, separated by a flexible oligo-glycine linker sequence. Screening a small library of designs in which the linker length varied from 2 to 12 residues identified a construct containing 8 glycine residues (Ico8) that formed well-defined cages. Characterization by dynamic light scattering, negative stain, and cryo-EM and by atomic force and IR-photoinduced force microscopy established that Ico8 assembles into a flexible hollow cage comprising 20 copies of the esterase trimer, 60 protein subunits in total, with overall icosahedral geometry. Notably, the cages formed by Ico8 proved to be extremely stable toward thermal and chemical denaturation: whereas TriEst was unfolded by heating ( Tm ≈ 75 °C) or denatured by 1.5 M guanidine hydrochloride, the Ico8 cages remained folded even at 120 °C or in 8 M guanidine hydrochloride. The increased stability of the cages is a new property that emerges from the higher-order structure of the protein cage, rather than being intrinsic to the components from which it is constructed.
Asunto(s)
Proteínas/química , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Subunidades de Proteína , TermodinámicaRESUMEN
Characterization of materials with biological applications and assessment of physiological effects of therapeutic interventions are critical for translating research to the clinic and preventing adverse reactions. Analytical techniques typically used to characterize targeted nanomaterials and tissues rely on bulk measurement. Therefore, the resulting data represent an average structure of the sample, masking stochastic (randomly generated) distributions that are commonly present. In this Perspective, we examine almost 20 years of work our group has done in different fields to characterize and control distributions. We discuss the analytical techniques and statistical methods we use and illustrate how we leverage them in tandem with other bulk techniques. We also discuss the challenges and time investment associated with taking such a detailed view of distributions as well as the risks of not fully appreciating the extent of heterogeneity present in many systems. Through three case studies showcasing our research on conjugated polymers for drug delivery, collagen in bone, and endogenous protein nanoparticles, we discuss how identification and characterization of distributions, i.e., a molecular view of the system, was critical for understanding the observed biological effects. In all three cases, data would have been misinterpreted and insights missed if we had only relied upon spatially averaged data. Finally, we discuss how new techniques are starting to bridge the gap between bulk and molecular level analysis, bringing more opportunity and capacity to the research community to address the challenges of distributions and their roles in biology, chemistry, and the translation of science and engineering to societal challenges.
Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/farmacología , HumanosRESUMEN
BACKGROUND: Breast cancer is most commonly managed with a combination of tumor ablation, radiation, and/or chemotherapy. Despite the oncologic benefit of these treatments, the detrimental effect of radiation on surrounding tissue challenges the attainment of ideal breast reconstruction outcomes. The purpose of this study was to determine the ability of topical deferoxamine (DFO) to reduce cutaneous ulceration and collagen disorganization following radiotherapy in a murine model of expander-based breast reconstruction. METHODS: Female Sprague-Dawley rats (n = 15) were divided into 3 groups: control (expander), XRT (expander + radiation), and DFO (expander + radiation + deferoxamine [DFO]). Expanders were placed in a submusculocutaneous plane in the right upper back and ultimately filled to 15 mL. Radiation was administered via a fractionated dose of 28 Gy. Deferoxamine was delivered topically for 10 days following radiation. After a 20-day recovery period, skin ulceration and dermal type I collagen organization were analyzed. RESULTS: Compared with control, the XRT group demonstrated a significant increase in skin ulceration (3.7% vs 43.3%, P = 0.00) and collagen fibril disorganization (26.3% vs 81.8%, P = 0.00). Compared with the XRT group, treatment with topical DFO resulted in a significant reduction in ulceration (43.3% vs 7.0%, P = 0.00) and fibril disorganization (81.8% vs 15.3%, P = 0.00). There were no statistical differences between the control and DFO groups in skin ulceration or collagen disorganization. CONCLUSIONS: This study suggests topical DFO is capable of reducing skin ulceration and type I collagen fibril disorganization following radiotherapy. This novel application of DFO has potential to enhance expander-based breast reconstruction outcomes and improve quality of life for women suffering the devastating effects of breast cancer.
Asunto(s)
Dorso , Deferoxamina , Piel , Animales , Femenino , Ratas , Administración Tópica , Dorso/cirugía , Deferoxamina/administración & dosificación , Deferoxamina/farmacología , Modelos Animales de Enfermedad , Microscopía de Fuerza Atómica , Distribución Aleatoria , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/efectos de la radiación , Dispositivos de Expansión TisularRESUMEN
Pigment epithelium derived factor (PEDF) is a multifunctional extracellular protein. In addition to its known anti-angiogenic and neurotrophic roles in collagen rich tissues, PEDF is thought to be involved in collagen fibril assembly due to its sequence specific binding to the collagen fibril and high expression in regions of active bone formation. In order to image the presence of the protein on the fibrils, PEDF was recombinantly made with a strep tag (strep-PEDF) and then gold nanoparticles conjugated to streptavidin (AuNP) were used as a secondary tag. The gold nanoparticles were detected using phase imaging in tapping mode AFM to image where exogenous PEDF bound in rabbit femur. These findings demonstrate that PEDF binds heterogeneously in cortical rabbit femur. Exogenous PEDF binding was concentrated at areas between microstructures with highly aligned collagen fibrils. Binding was not observed on or within the collagen fibrils themselves.
Asunto(s)
Colágeno Tipo I/metabolismo , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Animales , Sitios de Unión , Fémur/química , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Oro , Humanos , Nanopartículas del Metal , Microscopía de Fuerza Atómica/métodos , Unión Proteica , Conejos , EstreptavidinaRESUMEN
Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (â¼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid-liquid phase separated particles (core-shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a â¼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity.
RESUMEN
Folate-conjugated nanomaterials have been widely investigated for drug and imaging-agent delivery. In this work, two folic acid (FA) conjugated iron oxide particles (IOP), a â¼40 nm diameter FA-IOP and a â¼450 nm diameter FA-IOP(FA-SeraMag), were synthesized. Both particles aggregated in the presence of serum folate-binding protein (FBP) at physiological concentration and buffer conditions. Mixing 0.01% w/w FA-conjugated iron oxide particles with FBP-induced agglomeration generated an average hydrodynamic particle diameter of 3800 ± 1100 nm for â¼40 nm FA-IOP and 4030 ± 1100 nm for FA-SeraMag as measured by dynamic light scattering (DLS). The presence of excess human serum albumin (HSA) (600 µM) did not prevent agglomeration of the â¼40 nm FA-IOP; however, it did inhibit agglomeration of FA-SeraMag. Atomic force microscopy measurement provided additional insight into particle morphology with the detection of individual particles in the agglomerate. This behavior is an example of a triggered cascade. A protein structural change is induced by FA binding, and the structural change favors aggregation of the â¼4 nm diameter FBPs on the particle surface; this further triggers the agglomeration of both the â¼40 and â¼450 nm diameter IOPs.
Asunto(s)
Compuestos Férricos/metabolismo , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Nanopartículas del Metal , Humanos , Microscopía de Fuerza Atómica , Albúmina Sérica/metabolismo , Propiedades de SuperficieRESUMEN
Serum proteins play a critical role in the transport, uptake, and efficacy of targeted drug therapies, and here we investigate the interactions between folic acid-polymer conjugates and serum folate binding protein (FBP), the soluble form of the cellular membrane-bound folate receptor. We demonstrate that both choice of polymer and method of ligand conjugation affect the interactions between folic acid-polymer conjugates and serum FBP, resulting in changes in the folic acid-induced protein aggregation process. We have previously demonstrated that individual FBP molecules self-aggregate into nanoparticles at physiological concentrations. When poly(amidoamine) dendrimer-folic acid conjugates bound to FBP, the distribution of nanoparticles was preserved. However, the dendritic conjugates produced larger nanoparticles than those formed in the presence of physiologically normal human levels of folic acid, and the conjugation method affected particle size distribution. In contrast, poly(ethylene glycol)-folic acid conjugates demonstrated substantially reduced binding to FBP, did not cause folic acid-induced aggregation, and fully disrupted FBP self-aggregation. On the basis of these results, we discuss the potential implications for biodistribution, trafficking, and therapeutic efficacy of targeted nanoscale therapeutics, especially considering the widespread clinical use of poly(ethylene glycol) conjugates. We highlight the importance of considering specific serum protein interactions in the rational design of similar nanocarrier systems. Our results suggest that prebinding therapeutic nanocarriers to serum FBP may allow folate-specific metabolic pathways to be exploited for delivery while also affording benefits of utilizing an endogenous protein as a vector.
Asunto(s)
Dendrímeros/metabolismo , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Polietilenglicoles/metabolismo , Animales , Bovinos , Dendrímeros/química , Ácido Fólico/química , Humanos , Microscopía de Fuerza Atómica , Polietilenglicoles/química , Agregado de Proteínas , Unión Proteica , Espectrometría de FluorescenciaRESUMEN
Cationic polymers have been investigated as nonviral vectors for gene delivery due to their favorable safety profile when compared to viral vectors. However, nonviral vectors are limited by poor efficacy in inducing gene expression. The physicochemical properties of cationic polymers enabling successful gene expression have been investigated in order to improve expression efficiency and safety. Studies over the past several years have focused on five possible rate-limiting processes to explain the differences in gene expression: (1) endosomal release, (2) transport within specific intracellular pathways, (3) protection of DNA from nucleases, (4) transport into the nucleus, and (5) DNA release from vectors. However, determining the relative importance of these processes and the vector properties necessary for optimization remain a challenge to the field. In this Account, we describe over a decade of studies focused on understanding the interaction of cationic polymer and cationic polymer/oligonucleotide (polyplex) interactions with model lipid membranes, cell membranes, and cells in culture. In particular, we have been interested in how the interaction between cationic polymers and the membrane influences the intracellular transport of intact DNA to the nucleus. Recent advances in microfluidic patch clamp techniques enabled us to quantify polyplex cell membrane interactions at the cellular level with precise control over material concentrations and exposure times. In attempting to relate these findings to subsequent intracellular transport of DNA and expression of protein, we needed to develop an approach that could distinguish DNA that was intact and potentially functional for gene expression from the much larger pool of degraded, nonfunctional DNA within the cell. We addressed this need by developing a FRET oligonucleotide molecular beacon (OMB) to monitor intact DNA transport. The research highlighted in this Account builds to the conclusion that polyplex transported DNA is released from endosomes by free cationic polymer intercalated into the endosomal membrane. This cationic polymer initially interacts with the cell plasma membrane and appears to reach the endosome by lipid cycling mechanisms. The fraction of cells displaying release of intact DNA from endosomes quantitatively predicts the fraction of cells displaying gene expression for both linear poly(ethylenimine) (L-PEI; an effective vector) and generation five poly(amidoamine) dendrimer (G5 PAMAM; an ineffective vector). Moreover, intact OMB delivered with G5 PAMAM, which normally is confined to endosomes, was released by the subsequent addition of L-PEI with a corresponding 10-fold increase in transgene expression. These observations are consistent with experiments demonstrating that cationic polymer/membrane partition coefficients, not polyplex/membrane partition coefficients, predict successful gene expression. Interestingly, a similar partitioning of cationic polymers into the mitochondrial membranes has been proposed to explain the cytotoxicity of these materials. Thus, the proposed model indicates the same physicochemical property (partitioning into lipid bilayers) is linked to release from endosomes, giving protein expression, and to cytotoxicity.
Asunto(s)
Membrana Celular/metabolismo , ADN/metabolismo , Técnicas de Transferencia de Gen , Transporte Biológico , Núcleo Celular/metabolismo , Dendrímeros , Endosomas/metabolismo , Vectores Genéticos , PolietileneiminaRESUMEN
Developing improved cationic polymer-DNA polyplexes for gene delivery requires improved understanding of DNA transport from endosomes into the nucleus. Using a FRET-capable oligonucleotide molecular beacon (OMB), we monitored the transport of intact DNA to cell organelles. We observed that for effective (jetPEI) and ineffective (G5 PAMAM) vectors, the fraction of cells displaying intact OMB in the cytosol (jetPEI â« G5 PAMAM) quantitatively predicted the fraction expressing transgene (jetPEI â« G5 PAMAM). Intact OMB delivered with PAMAM and confined to endosomes could be released to the cytosol by the subsequent addition of L-PEI, with a corresponding 10-fold increase in transgene expression. These results suggest that future vector development should optimize vectors for intercalation into, and destabilization of, the endosomal membrane. Finally, the study highlights a two-step strategy in which the pDNA is loaded in cells using one vector and endosomal release is mediated by a second agent.
Asunto(s)
Cationes/metabolismo , ADN/metabolismo , Endosomas/metabolismo , Lípidos de la Membrana/metabolismo , Polímeros/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Sustancias Intercalantes/metabolismo , Plásmidos/metabolismo , Transfección/métodos , Transgenes/fisiologíaRESUMEN
A combination of solution NMR, dynamic light scattering (DLS), and fluorescence quenching assays were employed to obtain insights into the dynamics and structural features of a polyplex system consisting of HIV-1 transactivation response element (TAR) and PEGylated generation 5 poly(amidoamine) dendrimer (G5-PEG). NMR chemical shift mapping and (13)C spin relaxation based dynamics measurements depict the polyplex system as a highly dynamic assembly where the RNA, with its local structure and dynamics preserved, rapidly exchanges (Asunto(s)
Dendrímeros/química
, ARN/química
, VIH-1/química
, Espectroscopía de Resonancia Magnética/métodos
, Poliaminas/química
, Polietilenglicoles/química
, Elementos de Respuesta/genética
, Transfección/métodos
RESUMEN
Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an â¼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.
Asunto(s)
Dendrímeros/química , Receptores de Folato Anclados a GPI/química , Ácido Fólico/química , Animales , Sitios de Unión , Bovinos , Dendrímeros/farmacología , Sinergismo Farmacológico , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/farmacología , Polietilenglicoles/química , Unión ProteicaRESUMEN
G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.
Asunto(s)
Citoplasma/metabolismo , Dendrímeros/metabolismo , Colorantes Fluorescentes/metabolismo , Rodaminas/metabolismo , Dendrímeros/análisis , Colorantes Fluorescentes/análisis , Células HEK293 , Humanos , Microscopía Fluorescente , Imagen Óptica , Rodaminas/análisisRESUMEN
Probucol (PB), an antioxidant drug, is commonly used as a lipid concentration lowering drug to reduce blood plasma cholesterol levels in the clinic. However, the therapeutic effects of this drug are negatively impacted by its poor water solubility and low oral absorption efficiency. In this study, a PEGylated G5 PAMAM dendrimer (G5-PEG) modified nanoliposome was employed to increase water solubility, transepithelial transport, and oral absorption of PB. The uptake mechanism was explored in vitro in Caco-2 cells with the results suggesting that the absorption improvement of G5-PEG modified PB-liposome (PB-liposome/G5-PEG) was related to P-glycoprotein (P-gp) efflux pump but was independent of caveolae endocytosis pathways. Additionally, plasma lipid concentration lowering effects of PB-liposome/G5-PEG were evaluated in vivo in a LDLR-/- hyperlipidemia mouse model. Compared with saline treated group, treatment with PB-liposome/G5-PEG significantly inhibited the increase of plasma total cholesterol (TC) and triglyceride (TG) of mice induced by a high fat diet. Moreover, its lipid concentration lowering effects and plasma drug concentration were greater than PB alone or commercial PB tablets. Our results demonstrated that PB-liposome/G5-PEG significantly increased the oral absorption of PB and therefore significantly improved its pharmacodynamic effects.
Asunto(s)
Anticolesterolemiantes/administración & dosificación , Anticolesterolemiantes/farmacocinética , Sistemas de Liberación de Medicamentos , Liposomas , Nanocápsulas , Probucol/administración & dosificación , Probucol/farmacocinética , Administración Oral , Animales , Células CACO-2 , Colesterol/sangre , Dendrímeros/química , Estabilidad de Medicamentos , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Absorción Intestinal , Liposomas/química , Masculino , Ratones , Ratones Noqueados , Nanocápsulas/química , Polietilenglicoles/química , Receptores de LDL/deficiencia , Receptores de LDL/genética , Solubilidad , Triglicéridos/sangreRESUMEN
This study compared formulation effects of a dendrimer and a liposome preparation on the water solubility, transepithelial transport, and oral bioavailability of simvastatin (SMV). Amine-terminated G5 PAMAM dendrimer (G5-NH2) was chosen to form SMV/G5-NH2 molecular complexes, and SMV-liposomes were prepared by using a thin film dispersion method. The effects of these preparations on the transepithelial transport were investigated in vitro using Caco-2 cell monolayers. Results indicated that the solubility and transepithelial transport of SMV were significantly improved by both formulations. Pharmacokinetic studies in rats also revealed that both the SMV/G5-NH2 molecular complexes and the SMV-liposomes significantly improved the oral bioavailability of SMV with the liposomes being more effective than the G5-NH2. The overall better oral absorption of SMV-liposomes as compared to SMV/G5-NH2 molecular complexes appeared to arise from better liposomal solubilization and encapsulation of SMV and more efficient intracellular SMV delivery. FROM THE CLINICAL EDITOR: Various carrier systems have been designed to enhance drug delivery via the oral route. In this study, the authors compared G5 PAMAM dendrimers to liposome preparations in terms of solubility, transepithelial transport, and oral bioavailability of this poorly water-soluble drug. This understanding has improved our knowledge in the further development of drug carrier systems.