Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 198(2): 431-440, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34709417

RESUMEN

Interdependencies in social groups of animals are a combination of multiple pairwise interactions. Heterospecific groups are often characterized by important species that contribute more to group initiation, maintenance or function than other species. However, in large heterospecific groups, many pairwise interactions are not realised, while others may not be biologically significant, confounding inferences about species importance. Hence, in this study, we examine context dependent changes in species importance and assortment in mixed-species bird flocks from a tropical field site in Southern India using social network analysis. Specifically, we ask how the structural importance of a species and the clustering patterns of species relationships depends on species richness in mixed-species flocks. We constructed both raw and filtered networks; while our results are largely correlated, we believe that filtered networks can provide insights into community-level importance of species in mixed-flocks while raw networks depict flock-level patterns. We find significant differences in flocks of different richness in that different species emerge as structurally important across flocks of varying richness. We also find that assortment is higher in two-species flocks and decreases with an increase in the number of species in the flock ('flock richness' hereafter). We argue that the link between structural importance of species in mixed-species flock networks and their functional significance in the community critically depends on the social context: namely, the species richness of the mixed-species flock. We propose that examining species structural importance at different flock-richness values provides insights into biologically meaningful functional roles of species. More generally, we suggest that it is important to consider context when interpreting species centrality and importance in network structure.


Asunto(s)
Aves , Ecosistema , Conducta Social , Animales , Conducta Animal , India
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1878): 20220108, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066658

RESUMEN

The idea of 'nuclear species' has received a lot of attention in mixed-species flock research. Our impression of this literature is that referenced statements tend to cite the same papers in support of a small set of ideas, and often there is a mismatch between what papers contain and what they're cited for. Motivated by these impressions, we built and quantitatively examined a database of referenced statements about nuclearity in flocks. This confirmed our impression quantitatively, but more strikingly, a single paper stood out in its influence on ideas around nuclearity in flocks. Moynihan's 1962 monograph on mixed-species flocks in Panama, 'The organization and probable evolution of some mixed-species flocks of neotropical birds' published in Smithsonian Miscellaneous Collections, was cited twice as much as the next most-cited paper and was the most-cited paper for 10 out of 15 most-discussed ideas related to nuclearity. Further, a number of other highly cited papers are strongly influenced by Moynihan's ideas, i.e. its influence is much greater than what a count of citations conveys. We also found that Moynihan was mis-cited frequently. We juxtapose what we found from the citation analysis with what the paper actually contains to better understand the nature of support that Moynihan provides, and discuss the implications of our findings for what we know about and how we research nuclearity in flocks. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.


Asunto(s)
Aves , Animales
4.
Biol Rev Camb Philos Soc ; 95(4): 889-910, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32097520

RESUMEN

Mixed-species animal groups (MSGs) are widely acknowledged to increase predator avoidance and foraging efficiency, among other benefits, and thereby increase participants' fitness. Diversity in MSG composition ranges from two to 70 species of very similar or completely different phenotypes. Yet consistency in organization is also observable in that one or a few species usually have disproportionate importance for MSG formation and/or maintenance. We propose a two-dimensional framework for understanding this diversity and consistency, concentrating on the types of interactions possible between two individuals, usually of different species. One axis represents the similarity of benefit types traded between the individuals, while the second axis expresses asymmetry in the relative amount of benefits/costs accrued. Considering benefit types, one extreme represents the case of single-species groups wherein all individuals obtain the same supplementary, group-size-related benefits, and the other extreme comprises associations of very different, but complementary species (e.g. one partner creates access to food while the other provides vigilance). The relevance of social information and the matching of activities (e.g. speed of movement) are highest for relationships on the supplementary side of this axis, but so is competition; relationships between species will occur at points along this gradient where the benefits outweigh the costs. Considering benefit amounts given or received, extreme asymmetry occurs when one species is exclusively a benefit provider and the other a benefit user. Within this parameter space, some MSG systems are constrained to one kind of interaction, such as shoals of fish of similar species or leader-follower interactions in fish and other taxa. Other MSGs, such as terrestrial bird flocks, can simultaneously include a variety of supplementary and complementary interactions. We review the benefits that species obtain across the diversity of MSG types, and argue that the degree and nature of asymmetry between benefit providers and users should be measured and not just assumed. We then discuss evolutionary shifts in MSG types, focusing on drivers towards similarity in group composition, and selection on benefit providers to enhance the benefits they can receive from other species. Finally, we conclude by considering how individual and collective behaviour in MSGs may influence both the structure and processes of communities.


Asunto(s)
Conducta Animal/fisiología , Biodiversidad , Aves/clasificación , Peces/clasificación , Mamíferos/clasificación , Reptiles/clasificación , Animales , Técnicas de Observación Conductual , Evolución Biológica , Aves/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Peces/fisiología , Mamíferos/fisiología , Conducta Predatoria/fisiología , Reptiles/fisiología , Conducta Espacial/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA