Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(4): 702-15, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341443

RESUMEN

Kes1, and other oxysterol-binding protein superfamily members, are involved in membrane and lipid trafficking through trans-Golgi network (TGN) and endosomal systems. We demonstrate that Kes1 represents a sterol-regulated antagonist of TGN/endosomal phosphatidylinositol-4-phosphate signaling. This regulation modulates TOR activation by amino acids and dampens gene expression driven by Gcn4, the primary transcriptional activator of the general amino acid control regulon. Kes1-mediated repression of Gcn4 transcription factor activity is characterized by nonproductive Gcn4 binding to its target sequences, involves TGN/endosome-derived sphingolipid signaling, and requires activity of the cyclin-dependent kinase 8 (CDK8) module of the enigmatic "large Mediator" complex. These data describe a pathway by which Kes1 integrates lipid metabolism with TORC1 signaling and nitrogen sensing.


Asunto(s)
Endosomas/metabolismo , Metabolismo de los Lípidos , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Autofagia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 299(2): 102861, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603766

RESUMEN

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Asunto(s)
Antifúngicos , Diseño de Fármacos , Proteínas de Transferencia de Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Transporte Biológico/efectos de los fármacos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Transducción de Señal , Antifúngicos/química , Antifúngicos/farmacología
3.
Mol Pharm ; 20(12): 6140-6150, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37939020

RESUMEN

Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Humanos , Crizotinib/farmacología , Crizotinib/uso terapéutico , FN-kappa B , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Quinasa de Factor Nuclear kappa B
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293008

RESUMEN

Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the homeostasis of molecules which govern these processes. The unfolded protein response (UPR) is a general ER stress response tasked with maintaining the ER for optimal function, mediated by the master activator Ire1. Ire1 is an ER transmembrane protein that initiates the UPR, forming characteristic oligomers in response to irregularities in luminal protein folding and in the membrane lipid environment. The role of lipids in regulating the UPR remains relatively obscure; however, recent research has revealed a potent role for sphingolipids in its activity. Here, we identify a major role for the oxysterol-binding protein Kes1, whose activity is of consequence to the sphingolipid profile in cells resulting in an inhibition of UPR activity. Using an mCherry-tagged derivative of Ire1, we observe that this occurs due to inhibition of Ire1 to form oligomers. Furthermore, we identify that a sphingolipid presence is required for Ire1 activity, and that specific sphingolipid profiles are of major consequence to Ire1 function. In addition, we highlight cases where Ire1 oligomerization is absent despite an active UPR, revealing a potential mechanism for UPR induction where Ire1 oligomerization is not necessary. This work provides a basis for the role of sphingolipids in controlling the UPR, where their metabolism harbors a crucial role in regulating its onset.


Asunto(s)
Oxiesteroles , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/genética , Esfingolípidos , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Análisis por Conglomerados , Endorribonucleasas/metabolismo
5.
EMBO J ; 36(4): 487-502, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28057705

RESUMEN

Translational control during cell division determines when cells start a new cell cycle, how fast they complete it, the number of successive divisions, and how cells coordinate proliferation with available nutrients. The translational efficiencies of mRNAs in cells progressing synchronously through the mitotic cell cycle, while preserving the coupling of cell division with cell growth, remain uninvestigated. We now report comprehensive ribosome profiling of a yeast cell size series from the time of cell birth, to identify mRNAs under periodic translational control. The data reveal coordinate translational activation of mRNAs encoding lipogenic enzymes late in the cell cycle including Acc1p, the rate-limiting enzyme acetyl-CoA carboxylase. An upstream open reading frame (uORF) confers the translational control of ACC1 and adjusts Acc1p protein levels in different nutrients. The ACC1 uORF is relevant for cell division because its ablation delays cell cycle progression, reduces cell size, and suppresses the replicative longevity of cells lacking the Sch9p protein kinase regulator of ribosome biogenesis. These findings establish an unexpected relationship between lipogenesis and protein synthesis in mitotic cell divisions.


Asunto(s)
Acetil-CoA Carboxilasa/biosíntesis , Regulación Fúngica de la Expresión Génica , Mitosis , Biosíntesis de Proteínas , Levaduras/crecimiento & desarrollo , Levaduras/genética , Acetil-CoA Carboxilasa/genética , Metabolismo de los Lípidos , Sistemas de Lectura Abierta , Ribosomas/metabolismo , Levaduras/metabolismo
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201733

RESUMEN

The emergence of fungal "superbugs" resistant to the limited cohort of anti-fungal agents available to clinicians is eroding our ability to effectively treat infections by these virulent pathogens. As the threat of fungal infection is escalating worldwide, this dwindling response capacity is fueling concerns of impending global health emergencies. These developments underscore the urgent need for new classes of anti-fungal drugs and, therefore, the identification of new targets. Phosphoinositide signaling does not immediately appear to offer attractive targets due to its evolutionary conservation across the Eukaryota. However, recent evidence argues otherwise. Herein, we discuss the evidence identifying Sec14-like phosphatidylinositol transfer proteins (PITPs) as unexplored portals through which phosphoinositide signaling in virulent fungi can be chemically disrupted with exquisite selectivity. Recent identification of lead compounds that target fungal Sec14 proteins, derived from several distinct chemical scaffolds, reveals exciting inroads into the rational design of next generation Sec14 inhibitors. Development of appropriately refined next generation Sec14-directed inhibitors promises to expand the chemical weaponry available for deployment in the shifting field of engagement between fungal pathogens and their human hosts.


Asunto(s)
Antifúngicos/farmacología , Micosis/tratamiento farmacológico , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Animales , Humanos , Micosis/metabolismo
7.
J Biol Chem ; 294(50): 19424-19435, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31699893

RESUMEN

Autism spectrum disorders (ASDs) are developmental neuropsychiatric disorders with heterogeneous etiologies. As the incidence of these disorders is rising, such disorders represent a major human health problem with escalating social cost. Although recent years witnessed advances in our understanding of the genetic basis of some dysmorphic ASDs, little progress has been made in translating the improved understanding into effective strategies for ASD management or minimization of general ASD risk. Here we explore the idea, described in terms of the neural stem cell (NSC)/carnitine malnutrition hypothesis, that an unappreciated risk factor for ASD is diminished capacity for carnitine-dependent long-chain fatty acid ß-oxidation in neural stem cells of the developing mammalian brain. The basic premise is that fetal carnitine status is a significant metabolic component in determining NSC vulnerability to derangements in their self-renewal program and, therefore, to fetal ASD risk. As fetal carnitine status exhibits a genetic component that relates to de novo carnitine biosynthesis and is sensitive to environmental and behavioral factors that affect maternal circulating carnitine levels, to which the fetus is exposed, we propose that reduced carnitine availability during gestation is a common risk factor that lurks beneath the genetically complex ASD horizon. One major prediction of the NSC/carnitine malnutrition hypothesis is that a significant component of ASD risk might be effectively managed from a public policy perspective by implementing a carnitine surveillance and dietary supplementation strategy for women planning pregnancies and for women in their first trimester of pregnancy. We argue that this prediction deserves serious clinical interrogation.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Carnitina/metabolismo , Células-Madre Neurales/metabolismo , Trastorno del Espectro Autista/genética , Ácidos Grasos/metabolismo , Femenino , Humanos , Oxidación-Reducción , Embarazo , Factores de Riesgo
8.
J Biol Chem ; 294(18): 7419-7432, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894416

RESUMEN

N-Acylethanolamines (NAEs) are fatty acid derivatives that in animal systems include the well-known bioactive metabolites of the endocannabinoid signaling pathway. Plants use NAE signaling as well, and these bioactive molecules often have oxygenated acyl moieties. Here, we report the three-dimensional crystal structures of the signal-terminating enzyme fatty acid amide hydrolase (FAAH) from Arabidopsis in its apo and ligand-bound forms at 2.1- and 3.2-Å resolutions, respectively. This plant FAAH structure revealed features distinct from those of the only other available FAAH structure (rat). The structures disclosed that although catalytic residues are conserved with the mammalian enzyme, AtFAAH has a more open substrate-binding pocket that is partially lined with polar residues. Fundamental differences in the organization of the membrane-binding "cap" and the membrane access channel also were evident. In accordance with the observed structural features of the substrate-binding pocket, kinetic analysis showed that AtFAAH efficiently uses both unsubstituted and oxygenated acylethanolamides as substrates. Moreover, comparison of the apo and ligand-bound AtFAAH structures identified three discrete sets of conformational changes that accompany ligand binding, suggesting a unique "squeeze and lock" substrate-binding mechanism. Using molecular dynamics simulations, we evaluated these conformational changes further and noted a partial unfolding of a random-coil helix within the region 531-537 in the apo structure but not in the ligand-bound form, indicating that this region likely confers plasticity to the substrate-binding pocket. We conclude that the structural divergence in bioactive acylethanolamides in plants is reflected in part in the structural and functional properties of plant FAAHs.


Asunto(s)
Amidohidrolasas/química , Arabidopsis/enzimología , Evolución Biológica , Amidohidrolasas/metabolismo , Animales , Etanolaminas/química , Ligandos , Conformación Proteica , Ratas , Especificidad por Sustrato
9.
J Biol Chem ; 294(50): 19081-19098, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31690622

RESUMEN

Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.


Asunto(s)
Proteínas Portadoras/metabolismo , Lípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sitios de Unión , Proteínas Portadoras/química , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
10.
Biophys J ; 116(1): 92-103, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30580923

RESUMEN

Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.


Asunto(s)
Fosfatidilcolinas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Difracción de Neutrones , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
11.
J Lipid Res ; 60(2): 242-268, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30504233

RESUMEN

Phosphoinositides are key regulators of a large number of diverse cellular processes that include membrane trafficking, plasma membrane receptor signaling, cell proliferation, and transcription. How a small number of chemically distinct phosphoinositide signals are functionally amplified to exert specific control over such a diverse set of biological outcomes remains incompletely understood. To this end, a novel mechanism is now taking shape, and it involves phosphatidylinositol (PtdIns) transfer proteins (PITPs). The concept that PITPs exert instructive regulation of PtdIns 4-OH kinase activities and thereby channel phosphoinositide production to specific biological outcomes, identifies PITPs as central factors in the diversification of phosphoinositide signaling. There are two evolutionarily distinct families of PITPs: the Sec14-like and the StAR-related lipid transfer domain (START)-like families. Of these two families, the START-like PITPs are the least understood. Herein, we review recent insights into the biochemical, cellular, and physiological function of both PITP families with greater emphasis on the START-like PITPs, and we discuss the underlying mechanisms through which these proteins regulate phosphoinositide signaling and how these actions translate to human health and disease.


Asunto(s)
Eucariontes/citología , Eucariontes/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transducción de Señal , Animales , Humanos , Proteínas de Transferencia de Fosfolípidos/química
12.
EMBO J ; 34(8): 978-80, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25762589

RESUMEN

The breakdown of cellular components via autophagy is crucial for cellular homeostasis.In this issue of The EMBO Journal,Niso-Santano et al (2015) report the important observation that feeding cells with saturated or unsaturated fatty acids triggers mechanistically distinct autophagic responses. Feeding cells saturated fatty acid induced the canonical, BECN1/PI3K dependent autophagy pathway. Conversely,the unsaturated fatty acid oleate triggered autophagic responses that were independent of the BECN1/PI3K complex, but that required a functional Golgi system.


Asunto(s)
Autofagia/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Animales , Femenino , Humanos
13.
J Biol Chem ; 292(35): 14438-14455, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28718450

RESUMEN

Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Biología Computacional , Secuencia Conservada , Transferencia de Energía , Enlace de Hidrógeno , Ligandos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Mutación Missense , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Polimorfismo de Nucleótido Simple , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
Biochim Biophys Acta ; 1861(9 Pt B): 1352-1364, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27038688

RESUMEN

Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Asunto(s)
Metabolismo de los Lípidos/genética , Fosfatidilinositoles/genética , Proteínas de Transferencia de Fosfolípidos/genética , Plantas/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
15.
J Lipid Res ; 57(4): 650-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26921357

RESUMEN

Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Proteínas de Transferencia de Fosfolípidos/química , Piperazinas/farmacología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Diseño de Fármacos , Resistencia a Medicamentos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutación Missense , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Lipid Res ; 57(8): 1492-506, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256690

RESUMEN

A reliable method for purifying envelope-stripped nuclei from immortalized murine embryonic fibroblasts (iMEFs) was established. Quantitative profiling of the glycerophospholipids (GPLs) in envelope-free iMEF nuclei yields several conclusions. First, we find the endonuclear glycerophospholipidome differs from that of bulk membranes, and phosphatidylcholine (PtdCho) and phosphatidylethanolamine species are the most abundant endonuclear GPLs by mass. By contrast, phosphatidylinositol (PtdIns) represents a minor species. We also find only a slight enrichment of saturated versus unsaturated GPL species in iMEF endonuclear fractions. Moreover, much lower values for GPL mass were measured in the iMEF nuclear matrix than those reported for envelope-stripped IMF-32 nuclei. The collective results indicate that the nuclear matrix in these cells is a GPL-poor environment where GPL occupies only approximately 0.1% of the total nuclear matrix volume. This value suggests GPL accommodation in this compartment can be satisfied by binding to resident proteins. Finally, we find no significant role for the PtdIns/PtdCho-transfer protein, PITPα, in shuttling PtdIns into the iMEF nuclear matrix.


Asunto(s)
Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Fosfolípidos/metabolismo , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Embrión de Mamíferos/química , Fibroblastos/ultraestructura , Ratones , Proteínas de Transferencia de Fosfolípidos/metabolismo
18.
Biochim Biophys Acta ; 1851(6): 724-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25592381

RESUMEN

Phosphatidylinositol is a metabolic precursor of phosphoinositides and soluble inositol phosphates. Both sets of molecules represent versatile intracellular chemical signals in eukaryotes. While much effort has been invested in understanding the enzymes that produce and consume these molecules, central aspects for how phosphoinositide production is controlled and functionally partitioned remain unresolved and largely unappreciated. It is in this regard that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as central regulators of the functional channeling of phosphoinositide pools produced on demand for specific signaling purposes. The physiological significance of these proteins is amply demonstrated by the consequences that accompany deficits in individual PITPs. Although the biological problem is fascinating, and of direct relevance to disease, PITPs remain largely uncharacterized. Herein, we discuss our perspectives regarding what is known about how PITPs work as molecules, and highlight progress in our understanding of how PITPs are integrated into cellular physiology. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
19.
Nat Chem Biol ; 10(1): 76-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292071

RESUMEN

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transducción de Señal , Unión Proteica , Relación Estructura-Actividad
20.
Trends Biochem Sci ; 35(3): 150-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19926291

RESUMEN

Lipid signaling pathways define central mechanisms for cellular regulation. Productive lipid signaling requires an orchestrated coupling between lipid metabolism, lipid organization and the action of protein machines that execute appropriate downstream reactions. Using membrane trafficking control as primary context, we explore the idea that the Sec14-protein superfamily defines a set of modules engineered for the sensing of specific aspects of lipid metabolism and subsequent transduction of 'sensing' information to a phosphoinositide-driven 'execution phase'. In this manner, the Sec14 superfamily connects diverse territories of the lipid metabolome with phosphoinositide signaling in a productive 'crosstalk' between these two systems. Mechanisms of crosstalk, by which non-enzymatic proteins integrate metabolic cues with the action of interfacial enzymes, represent unappreciated regulatory themes in lipid signaling.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA