RESUMEN
Two scientists walk into a bar. After a pint and an exchange of pleasantries, one says to the other, "Where do you come from? Scientifically, I mean." The queried scientist responds, "Out of the RNA world." "Don't we all," the asker responds chuckling. Fifteen years ago, the joke would have been made with a nod to the notion that life arose from an RNA-based precursor, the so-called "RNA world." Yet had this conversation happened last week, the scientists would also be grinning in appreciation of the extent to which contemporary cellular biology is steeped in all things RNA. Ours is truly an RNA world.In this year's special review issue, the Cell editorial team has brought together articles focused on RNA in the modern world, providing perspectives on classical and emerging areas of inquiry. We extend our thanks to the many distinguished experts who contributed their time and effort as authors and reviewers to make the issue informative, thought-provoking, and timely. We hope that this collection of articles, written as we stand on the verge of a new wave of RNA biology, edifies and inspires by revealing the inner workings of these versatile molecules and by highlighting the next key questions that need to be addressed as we strive to understand the full functional scope of RNA in cells.
Asunto(s)
ARN/genética , ARN/metabolismo , Animales , Bacterias/genética , Regulación de la Expresión Génica , Humanos , ARN/químicaRESUMEN
In Saccharomyces cerevisiae, the pheromone-induced ubiquitylation and degradation of the filamentation pathway-specific activator, Tec1, suppresses cross talk between the mating and filamentous growth mitogen-activated protein kinase (MAPK) pathways. The mating pathway MAPK, Fus3, phosphorylates Tec1, resulting in its recognition by the SCF (for Skp1, Cullin, F-box containing) E3 ubiquitin ligase complex, leading to its proteolysis. Previously, it was found that Tec1 destruction requires phosphorylation on threonine 273 (T273). T273 is embedded in the sequence LLpTP, which is identical to the canonical binding site for Cdc4, a conserved F-box substrate adaptor for the SCF complex. However, recent work on both Cdc4 and the human Cdc4 ortholog Fbw7 has shown that a second substrate phosphorylation can be required for optimal Cdc4 binding in vitro. We report here that high-affinity binding of recombinant Cdc4 to Tec1 phosphopeptides requires phosphorylation of not only T273 but also a second site, T276. Significantly, both phospho-sites on Tec1 and a conserved basic pocket on Cdc4 are critical for Tec1 proteolysis in response to pheromone treatment of cells, establishing a role for two-phosphate recognition by yeast Cdc4 in substrate targeting in vivo.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Humanos , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónAsunto(s)
Biología Evolutiva , Identidad de Género , Investigadores , Investigación , Femenino , Humanos , VozRESUMEN
In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.
Asunto(s)
Eucromatina/genética , Genes Fúngicos , Variación Genética , Histonas/genética , Acetilación , Sustitución de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Cromosomas , Codón Iniciador , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Intergénico/genética , ADN Intergénico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Histonas/metabolismo , Análisis por Micromatrices , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
The yeast MAPK pathways required for mating versus filamentous growth share multiple components yet specify distinct programs. The mating-specific MAPK, Fus3, prevents crosstalk between the two pathways by unknown mechanisms. Here we show that pheromone signaling induces Fus3-dependent degradation of Tec1, the transcription factor specific to the filamentation pathway. Degradation requires Fus3 kinase activity and a MAPK phosphorylation site in Tec1 at threonine 273. Fus3 associates with Tec1 in unstimulated cells, and active Fus3 phosphorylates Tec1 on T273 in vitro. Destruction of Tec1 requires the F box protein Dia2 (Digs-into-agar-2), and Cdc53, the Cullin of SCF (Skp1-Cdc53-F box) ubiquitin ligases. Notably, mutation of the phosphoacceptor site in Tec1, deletion of FUS3, or deletion of DIA2 results in a loss of signaling specificity such that pheromone pathway signaling erroneously activates filamentation pathway gene expression and invasive growth. Signal-induced destruction of a transcription factor for a competing pathway provides a mechanism for signaling specificity.