Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 113(7): 1325-1334, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36774558

RESUMEN

Somatic embryogenesis receptor kinases (SERKs) belong to the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily, and many LRR-RLKs have been proven to play a key role in plant immune signal transmission. However, the functions of SERKs in resistance to stripe rust caused by Puccinia striiformis f. sp. tritici remains unknown. Here, we identified a gene, TaSERK1, from Xiaoyan 6, a wheat cultivar possessing high-temperature seedling-plant (HTSP) resistance to the fungal pathogen P. striiformis f. sp. tritici and expresses its resistance at the seedling stage. The expression level of TaSERK1 was upregulated upon P. striiformis f. sp. tritici inoculation under relatively high temperatures. The transcriptional level of TaSERK1 was significantly increased under exogenous salicylic acid and brassinosteroids treatments. The barley stripe mosaic virus-induced gene silencing assay indicated that TaSERK1 positively regulated the HTSP resistance to stripe rust. The transient expression of TaSERK1 in tobacco leaves confirmed its subcellular localization on the plasma membrane. Furthermore, TaSERK1 interacted with and phosphorylated the chaperone protein TaDJA7, which belongs to the heat shock protein 40 subfamily. Silencing TaDJA7 compromised the HTSP resistance to stripe rust. The results indicated that when the membrane immune receptor TaSERK1 perceives the P. striiformis f. sp. tritici infection under relatively high temperatures, it transmits the signal to TaDJA7 to activate HTSP resistance to the pathogen.


Asunto(s)
Basidiomycota , Plantones , Plantones/genética , Plantones/microbiología , Leucina , Temperatura , Proteínas Repetidas Ricas en Leucina , Enfermedades de las Plantas/microbiología , Basidiomycota/fisiología
2.
Mol Plant Pathol ; 24(12): 1522-1534, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37786323

RESUMEN

Wheat cultivar Xiaoyan 6 (XY6) has high-temperature seedling-plant (HTSP) resistance to Puccinia striiformis f. sp. tritici (Pst). However, the molecular mechanism of Pst effectors involved in HTSP resistance remains unclear. In this study, we determined the interaction between two Pst effectors, PstCEP1 and PSTG_11208, through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and pull-down assays. Transient overexpression of PSTG_11208 enhanced HTSP resistance in different temperature treatments. The interaction between PstCEP1 and PSTG_11208 inhibited the resistance enhancement by PSTG_11208. Furthermore, the wheat apoplastic thaumatin-like protein 1 (TaTLP1) appeared to recognize Pst invasion by interacting with PSTG_11208 and initiate the downstream defence response by the pathogenesis-related protein TaPR1. Silencing of TaTLP1 and TaPR1 separately or simultaneously reduced HTSP resistance to Pst in XY6. Moreover, we found that PstCEP1 targeted wheat ferredoxin 1 (TaFd1), a homologous protein of rice OsFd1. Silencing of TaFd1 affected the stability of photosynthesis in wheat plants, resulting in chlorosis on the leaves and reducing HTSP resistance. Our findings revealed the synergistic mechanism of effector proteins in the process of pathogen infection.


Asunto(s)
Basidiomycota , Plantones , Plantones/metabolismo , Triticum/genética , Triticum/metabolismo , Temperatura , Puccinia , Basidiomycota/fisiología , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA