Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phytopathology ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190849

RESUMEN

Xanthomonas spp. are plant pathogens known for significantly impacting crop yields. Among them, Xanthomonas albilineans (Xal) is notable for colonizing the xylem and causing sugarcane leaf scald disease. This study employed homologous recombination to mutate quorum sensing (QS) regulatory genes (rpf) to investigate their role in Xal pathogenicity. Deletions of rpfF (ΔrpfF), rpfC (ΔrpfC), and rpfG (ΔrpfG) led to reduced swarming, growth, and virulence. However, DSF supplementation restored swarming and growth in the ΔrpfF mutant. Deleting rpfC, rpfG, and rpfF also reduced twitching motility and affected Type IV Pilus (T4P) expression. Transcriptomic analysis revealed that ΔrpfF positively regulates flagellar genes. DSF supplementation in ΔrpfF (ΔrpfF-DSF) modulated the expression of flagellar, chemotaxis, and T4P genes. These findings elucidate the DSF-mediated swarming pathway in Xal and provide valuable insights into its regulatory mechanisms.

2.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791383

RESUMEN

A homeobox transcription factor is a conserved transcription factor, ubiquitous in eukaryotes, that regulates the tissue formation of structure, cell differentiation, proliferation, and cancer. This study identified the homeobox transcription factor family and its distribution in Phoma sorghina var. saccharum at the whole genome level. It elucidated the gene structures and evolutionary characteristics of this family. Additionally, knockout experiments were carried out and the preliminary function of these transcription factors was studied. Through bioinformatics approaches, nine homeobox transcription factors (PsHOX1-PsHOX9) were identified in P. sorghina var. saccharum, and these contained HOX-conserved domains and helix-turn-helix secondary structures. Nine homeobox gene deletion mutants were obtained using the homologous recombinant gene knockout technique. Protoplast transformation was mediated by polyethylene glycol (PEG) and the transformants were identified using PCR. The knockouts of PsHOX1, PsHOX2, PsHOX3, PsHOX4, PsHOX6, PsHOX8, and PsHOX9 genes resulted in a smaller growth diameter in P. sorghina var. saccharum. In contrast, the knockouts of the PsHOX3, PsHOX6, and PsHOX9 genes inhibited the formation of conidia and led to a significant decrease in the pathogenicity. This study's results will provide insights for understanding the growth and development of P. sorghina var. saccharum. The pathogenic mechanism of the affected sugarcane will provide an essential theoretical basis for preventing and controlling sugarcane twisted leaf disease.


Asunto(s)
Proteínas de Homeodominio , Enfermedades de las Plantas , Saccharum , Saccharum/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Filogenia
3.
Plant Dis ; 107(5): 1299-1309, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36410020

RESUMEN

Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.


Asunto(s)
Fusarium , Saccharum , Filogenia , Virulencia/genética , China , Grano Comestible , Variación Genética
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446015

RESUMEN

Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.


Asunto(s)
Fusarium , Transcriptoma , Metabolismo Secundario/genética , Nitrógeno/metabolismo , Espectrometría de Masas en Tándem , Giberelinas/metabolismo , Regulación Fúngica de la Expresión Génica
5.
BMC Genomics ; 23(1): 671, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36162999

RESUMEN

BACKGROUND: Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. RESULT: The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. CONCLUSION: These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease.


Asunto(s)
Saccharum , Xanthomonas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Saccharum/microbiología , Virulencia/genética , Factores de Virulencia/genética , Xanthomonas/genética
6.
Mol Plant Microbe Interact ; 34(8): 973-976, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33797948

RESUMEN

Sugarcane pokkah boeng disease (PBD) is emerging as a prevalent foliar disease in China. This airborne disease is caused by the Fusarium species complex. To investigate the diversity and evolution of Fusarium spp., we performed whole-genome sequencing of Fusarium andiyazi YN28 using a combination of Oxford Nanopore and Illumina technology. The F. andiyazi YN28 genome was sequenced, assembled, and annotated. A high-quality genome was assembled into 24 contigs with an N50 of 2.80 Mb. The genome assembly generated a total size of 44.1 Mb with a GC content of 47.64%. In total, 15,508 genes were predicted, including 794 genes related to the carbohydrate-active enzymes, 397 noncoding RNA, 155 genes associated with transporter classification, 4,550 genes linked to pathogen-host interactions, and 269 genes involved in effector proteins. Collectively, our results will provide insight into the host-pathogen interactions and will facilitate the breeding of new varieties of sugarcane resistant to PBD.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Saccharum , Fusarium/genética , Fitomejoramiento , Enfermedades de las Plantas
7.
Mol Plant Microbe Interact ; 33(9): 1092-1094, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32460609

RESUMEN

Phoma sorghina var. saccharum is a fungal pathogen that causes sugarcane twisted leaf disease in China. Here, we report complete genome assemblies of the Phoma sorghina var. saccharum isolate BS2-1, generated using single-molecule real-time sequencing. We present a high-quality genome sequence of a Phoma isolate that was assembled into 22 contigs with an N50 length of 1.92 Mb, a total length of 33.12 Mb, and a GC content of 52.12%. A total of 7,870 genes were annotated, using a combination of gene prediction tools, including 281 noncoding RNAs, 515 genes encoding carbohydrate-active enzymes, 2,440 genes associated with pathogen-host interactions, and 583 genes encoding secreted proteins. The complete genome sequence will be useful for understanding host-pathogen interaction and for improving disease management strategies.


Asunto(s)
Ascomicetos , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Saccharum/microbiología , Ascomicetos/genética , China , Hojas de la Planta
8.
BMC Genomics ; 20(1): 115, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732567

RESUMEN

BACKGROUND: Pokkah boeng is one of the most serious and devastating diseases of sugarcane and causes significant loss in cane yield and sugar content. Although carbendazim is widely used to prevent fungal diseases, the molecular basis of Fusarium species complex (FSC) resistance to carbendazim remains unknown. RESULTS: The EC50 (fungicide concentration that inhibits 50% of mycelial growth) values of carbendazim for 35 FSC isolates collected in cane growing regions of China were ranged from 0.5097 to 0.6941 µg mL- 1 of active ingredient (a.i.), in an average of 0.5957 µg a.i. mL- 1. Among carbendazim-induced mutant strains, SJ51M (F. verticillioides) had a CTG rather than CAG codon (Q134L) at position 134 of the FVER_09254 gene, whereas in the mutant strain HC30M (F. proliferatum) codon ACA at position 351 of the FPRO_07779 gene was replaced by ATA (T351I). Gene expression profiling analysis was performed for SJ51M and its corresponding wild type strain SJ51, with and without carbendazim treatment. The gene expression patterns in SJ51 and SJ51M changed greatly as evidenced by the detection of 850 differentially expressed genes (DEGs). Functional categorization indicated that genes associated with oxidation-reduction process, ATP binding, integral component of membrane, transmembrane transport and response to stress showed the largest expression changes between SJ51M and SJ51. The expression levels of many genes involved in fungicide resistance, such as detoxification enzymes, drug efflux transporters and response to stress, were up-regulated in SJ51M compared to SJ51 with and without carbendazim treatment. CONCLUSION: FSC was sensitive to carbendazim and had the potential for rapid development of carbendazim resistance. The transcriptome data provided insight into the molecular pathways involved in FSC carbendazim resistance.


Asunto(s)
Bencimidazoles/farmacología , Carbamatos/farmacología , Farmacorresistencia Fúngica/genética , Fusarium/efectos de los fármacos , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Saccharum/microbiología , Fusarium/genética , Genes Fúngicos/genética , Mutación , Temperatura , Transcriptoma/efectos de los fármacos
9.
Microbiol Spectr ; 12(2): e0309023, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189328

RESUMEN

Sugarcane is a critical sugar and bioenergy crop in China. However, numerous factors, including root rot disease, hamper its yield. Root rot disease is a severe agricultural issue, reducing yield and threatening sustainable crop production. The current study aimed to explore the fungal community structure, identify and characterize the primary pathogen for sugarcane root rot in Guangzhou, China. Eighty-nine samples of sugarcane root, stalk, rhizosphere soil, and irrigation water were collected from five sites in Guangzhou, China. Subsequently, 276 fungal strains were isolated to identify the primary pathogens. The five most common genera identified were Penicillium, Fusarium, Gongronella, Trichoderma, and Cladosporium. Fusarium was more prevalent in the infected soil samples than in healthy ones. Pathogenic assays of the strains revealed that the strain GX4-46 caused 80% of the disease. The strain was confirmed as Fusarium commune through phylogenetic and genome sequence analysis. Rhizosphere soil samples from different regional crops were collected to better understand the fungal community structure and the primary pathogen. We observed a significant presence of Fusarium in irrigation water, indicating that the root rot disease could originate from the irrigation water and then spread as a soil-borne disease. This research is pioneering and one of the most comprehensive investigations on the occurrence and prevalence of sugarcane root rot disease. This study will serve as a reference for expanding the sugarcane industry and a foundation for further exploration and control of root rot.IMPORTANCESugarcane, a significant economic crop, faces challenges due to root rot pathogens that accumulate each year in plants and soil through ratoon planting. This disrupts soil microbial balance and greatly impedes sugarcane industry growth. Symptoms range from wilting and yellowing leaves to stunted growth and reduced seedling tillers. The rhizosphere microbiota plays an important role in plant development and soil health. Little is known about root rot fungal community structure, especially in sugarcane. Here, we focused on exploring the main causative pathogen of root rot in the area alongside a detailed survey of the rhizosphere soil of different severity sugarcane cultivars and rotation crops of the region. To validate the findings, we also investigated the irrigation water of the area. Our study revealed Fusarium commune as the causative pathogen of root rot in the area, primarily originating from water and later as soil-borne. Using Trichoderma can control the disease effectively.


Asunto(s)
Fusarium , Micobioma , Saccharum , Trichoderma , Raíces de Plantas/microbiología , Filogenia , Trichoderma/genética , Suelo/química , Productos Agrícolas , Brotes de Enfermedades , Agua
10.
Mol Plant Pathol ; 25(1): e13414, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279852

RESUMEN

Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.


Asunto(s)
Fusarium , Saccharum , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Inmunidad de la Planta/genética , Saccharum/genética , Saccharum/metabolismo , Muerte Celular , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA