Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biol Methods Protoc ; 9(1): bpad042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229686

RESUMEN

Botrytis cinerea is a well-known plant pathogen responsible for grey mould disease infecting more than 500 plant species. It is listed as the second most important plant pathogen scientifically and economically. Its impact is particularly severe in grapes since it affects both the yield of grape berries and the quality of wines. While various methods for detecting B. cinerea have been investigated, the application of Oxford Nanopore Technology (ONT) for complete ribosomal operon sequencing, which has proven effective in human and animal fungal research and diagnostics, has not yet been explored in grapevine (Vitis vinifera) disease research. In this study, we sequenced complete ribosomal operons (∼5.5 kb amplicons), which encompass the 18S, ITS1, 5.8S, ITS2, and 28S regions, from both pure cultures of B. cinerea and infected grapevine leaf samples. Minimap2, a sequence alignment tool integrated into the EPI2ME software, served as a taxonomy classifier, utilizing the custom reference database FRODO. The results demonstrate that B. cinerea was detectable when this pathogen was not the dominant fungal species in leaf samples. Additionally, the method facilitates host DNA-free sequencing and might have a good potential to distinguish other pathogenic and non-pathogenic fungal species hosted within grapevine's infected leaves, such as Alternaria alternata, Saccharomyces cerevisiae, Saccharomyces boulardii, Mucor racemosus, and Ascochyta rabie. The sequences were uploaded to the NCBI database. Long amplicon sequencing method has the capacity to be broadened to other susceptible crops and pathogens, as a valuable tool for early grey rot detection and mycobiome research. Future large-scale studies are needed to overcome challenges, such as comprehensive reference databases for complete fungal ribosomal operons for grape mycobiome studies.

2.
BMC Ecol ; 13: 15, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23565726

RESUMEN

BACKGROUND: Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host's resistance. Generation of reactive oxygen species (ROS) is one of the host's initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. RESULTS: We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses - total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. CONCLUSIONS: These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success.


Asunto(s)
Animales Salvajes/parasitología , Ecosistema , Malaria Aviar/metabolismo , Estrés Oxidativo , Passeriformes/metabolismo , Plasmodium/fisiología , Animales , Interacciones Huésped-Parásitos , Malaria Aviar/epidemiología , Malaria Aviar/parasitología , Passeriformes/parasitología , Densidad de Población , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA